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ne day when little Claire 0 
Ulam was watching some 
children playing ball with 
their father, a friend asked 

whether her father ever played 
like that with her. The 

answer was an emphatic 
"No! No! All my father 

does is think, think, think! 
Nothing but think!" 
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an was larger than life; his person defies description. Not any one, I 
think (myself included, of course), ever viewed the whole of him. I hope 
that from this special issue a composite picture will emerge. All I am 
able to contribute, at this time, is the following quick thumbnail sketch. 

Stan never passed unnoticed; he came on fast and strong, as the expression goes. 
(I think that trait is genetic, for it exists in varying degrees among members of his 
family I have known.) 

He was a loner, a maverick, a very complicated 'man, a Pole, aid, above all, 
a study in contrasts and contradictions, whichoften aroused mixed and conflicting 
emotions in people. He moved only to the beat of his own drum and never kow- 
towed to anyone or stooped to promote himself. Given to bragging in jest about in- 
consequential prowesses, he was singulafly modest about his scientific accomplish- 
ments. "Posterity will decide!" was his way of putting it to me. 

He electrified the air around all who came in touch with him, for his wit, cul- 
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Esquisse 

ture, and erudition were dazzling. It was 
game. With a humanist he would display 
with Latin and Greek. With historians he loved to 
specialties. And when he met a chemist, he would 
chemistry* subject he himself admitted he lonew v 

Characteristically, he measured himse 
against his contemporaries, from whom he 
it's lonely up there, so to test his own 
company, though often he felt excruci 
interesting," he would complain. 

He lived mainly in the confines 
This made him shun most other forms of activity except ch 
enjoyed. Outside science what attracted him the most were 
tiquity, the Renaissance. 

Another characteristic of his was an absolute self-confidence and unflinc 
timism. This served him in good stead in the d moments of his life, for it 
him to block them off. 

But he paid a price. This urbane, gentle man who always 
fable, and at ease suffered from what be called a "nervous sto 
he tended to dwell on such discomforts, except at moment of death, which by . 

contrast he took with extraordinary detachment. 1 believe that in a way he 
it coming, though at the time, neither he nor I fully gauged the gravity of his final 
malaise. 

We lived in New Mexico the better part of our lives, said 
its vistas and the quality of its air. Despite a deep-seated longing 
Stan thrived in this coontry, and he loved its openness, dynamism 
&city* 

In his youth he bad the reputation of 
a Don Juan and remained very attractive 
to women, whose attentions he enjoyed. 
"Women seem to like me. I wonder 
why?" he would ask. As for me, over 
the years I became a partner on whom 
he leaned increasingly for most practical 
matters, his "Home Secretary," ia the 
British sense of the term, and managed 
most of his time and his affairs, whieh 
left him free to indulge his mind. 

A more extraordinary person I have 
never known. I came 
first met at Harvard in 1939 and con- 
sider myself most f o m a t e  to have 
basked in his aura, at the frontiers of 
twentieth-century sciflsnce, for nearly 
half a century. 

Santa Fe 
October 1984 
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Vita 

P O L I S H  Y E A R S  

1909 Born April 13 in L d w ,  Poland, then 
part of Austro-Hungarian Empire 

1916 Russian troops occupy L d w .  Family 
moves temporarily to Vienna 

7975 Family returns to L d w ,  now part 
of Republic of Poland. Ukrainians 
besiege the city 

7 97 9 Enters pymnasium 

1927 Matriculates from vymnasium. Enters 
L m  Polytechnic Institute 

Father (left) and uncle Szymon seeing Stan and 
his young brother, Adam, off for the last time at 
Gdynia. Poland, 1939 

At the age of ten in 1919 I passed the en- 
trance examination to the gymnasium. This was 
a secondary school patterned after the German 
gymnasia and the French lyckes. Instruction usu- 
ally took eight years. I was an A student, except 
in penmanship and drawing, but did not study 
much. 

Around [that time] so much was written in 
newspapers and magazines about the theory of 
relativity that I decided to find out what it was 
all about . . . This interest became known among 
friends of my father, who remarked that I "under- 
stood" the theory of relativity . . . This gave me a 
reputation I felt I had to maintain, even though I 
knew that I did not genuinely understand any of 
the details. Nevertheless, this was the beginning 
of my reputation as a "bright child." 

My father, Jozef Ulam, was a lawyer. He was 
born i n  Lwow, Poland, in 1877. At- the time of 
his birth the city was the capital of the province 
of Galicia, part of the Austro-Hungarian Empire. 
When I was born in 1909 this was still true . . . 
My mother, Anna Auerbach, was born in Stryj, 
a small town some sixty miles south of Lwow, 
near the Carpathian Mountains. Her father was 
an industrialist who dealt in steel and represented 
factories in Galicia and Hungary. 

In November of [I9181 the Ukrainians be- 
sieged the city . . . Our house was in a relatively 
safe part of town, even though occasional ar- 
tillery shells struck nearby . . . Many of our rel- 
atives came to stay with us . . . some thirty of 
them, half being children. There were not nearly 
enough beds, of course, and I remember people 
sleeping everywhere on rolled rugs on the floor 
. . . Strangely enough, my memories of these days 
are of the fun I had playing, hiding, learning card 
games with the children for the two weeks be- 
fore the siege was lifted . . . For children wartime 
memories are not always traumatic. 

Passport photo, 1935 

I had mathematical curiosity very early. My 
father had in his library a wonderful series of 
German paperback books-Rekiam, they were 
called. One was Ruler's Algebra. I looked at 
it when I was perhaps ten or eleven, and it gave 
me a mysterious feeling. The symbols looked 
like magic signs; I wondered whether one day I 
could understand them. 

In high school, I was stimulated by . . . the 
problem of the existence of odd perfect numbers. 
An integer is perfect if it is equal to the sum 
of all its divisors including one but not itself. 
For instance: 6 = 1 + 2 + 3 is perfect. So is 

28 = 1 + 2 + 4 + 7 + 14. You may ask: does there 
exist a perfect number that is odd? The answer 
is unknown to this day. 

Poincare molded portions of my scientific 
thinking. Reading one of his books today demon- 
strates how many wonderful truths [remain], al- 
though everything in mathematics has changed 
almost beyond recognition and in physics per- 
haps even more so. I admired Steinhaus's book 
almost as much, for it gave many examples of 
actual mathematical problems. 

In 1927 I passed my three-day matriculation 
examinations and a period of indecision began. 
The choice of a future career was not easy. My 
father, who had wanted me to become a lawyer 
so I could take over his large practice, now recog- 
nized that my inclinations lay in other directions 
. . . My parents urged me to become an engineer, 
and so I applied for admission at the Lw6w Poly- 
technic Institute as a student of either mechanical 
or electrical engineering. 
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Vita 

-- 

P O L I S H  Y E A R S  

1928 Writes his first paper, published in 
Fundamenta Mathematicae in 1929 

1931 Attends mathematical congress in 
Wilno 

1932 M.A.  from Polytechnic Institute 

1933 D.Sc. from Polytechnic Institute 

In the fall of 1927 I began attending lectures 
at the Polytechnic Institute in the Department of 
General Studies, because the quota of Electri- 
cal Engineering already was full. The level of 
the instruction was obviously higher than that at 
high school, but having read Poincark and some 
special mathematical treatises, I naively expected 
every lecture to be a masterpiece of style and ex- 
position. Of course. I was disappointed. 

Soon I could answer some of the more diffi- 
cult questions in [Kuratowski's] set theory 
course, and I began to pose other problems. 
Right from the start I appreciated Kuratowski's 
patience and generosity in spendingso much 
time with a novice. Several times a week I would 
accompany him to his apartment at lunch time, 
a walk of about twenty minutes, during which 
I asked innumerable mathematical questions . . . 
Between classes. I would sit in the offices of 
some of the mathematics instructors. At that time 
I was perhaps more eager than at any other time 
in my life to do mathematics to the exclusion of 
almost any other activity. 

At the beginning of the second semester of my 
freshman year, Kuratowski told me about a prob- 
lem in set theory that involved transformations of 
sets. It was connected with a well-known theo- 
rem of Bernstein: if 2A = 2B, then A = B, in the 
arithmetic sense of infinite cardinals. This was 
the first problem on which I really spent arduous 
hours of thinking. I thought about it in a way 
which now seems mysterious to me, not con- 
sciously or explicitly knowing what I was aiming 
at. So immersed in some aspects was 1, that I did 
not have a conscious overall view. Nevertheless. 
I managed to show by means of a construction 
how to solve the problem, devising a method of 
representing by graphs the decomposition of sets 

Y> 
and the corresponding transformations. 

.w --  Unbelievably, at the time I thought I had 
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Vita 

Panorama of L v ~ h ?  in the 1970s 

a photo of Banach, circa 1968 

It was Mazur (along with Kuratowski and Ba- 
nach) who introduced me to certain large phases 
of mathematical thinking and approaches. From 
him I learned much about the attitudes and psy- 
chology of research. Sometimes we would sit for 
hours in a coffee house. He would write just one 
symbol or a line like y = f(x) on a piece of paper, 
or on the marble table top. We would both stare 
at it as various thoughts were suggested and dis- 
cussed. These symbols in front of us were like 
a crystal ball to help us focus our concentration. 

Beginning with the third year of studies, most 
of my mathematical work was really started in 
conversations with Mazur and Banach. And ac- 
cording to Banach some of my own contributions 
were characterized by a certain "strangeness" in 
the formulation of problems and in the outline of 
possible proofs. As he told me once some years 
later, he was surprised how often these "strange" 
approaches really worked. 

He [Banach] enjoyed long mathematical dis- 
cussions with friends and students. I recall a 
session with Mazur and Banach at the Scottish 
Cafe which lasted seventeen hours without inter- 
ruption except for meals. 

These long sessions in the cafes were probably 
unique. Collaboration was on a scale and with an 
intensity I have never seen surpassed, equaled or 
approximated anywhere~except perhaps at Los 
Alamos during the war years . . . Needless to say 
such mathematical discussions were interspersed 
with a great deal of talk about science in general 
(especially physics and astronomy), university 
gossip, politics, the state of affairs in Poland: 
or to use one of John von Neumanns favorite 
expressions, the "rest of the universe." The 
shadow of coming events, of Hitler's rise in 
Germany and the premonition of a world war 
loomed ominously. 

The second big congress I attended [of mathe- 
maticians from the Slavic countries] was held in 
Wilno in 1931 . . . At the congress I gave a talk 
about the results obtained with Mazur on geomet- 
rical isometric transformations of Banach spaces, 
demonstrating that they are linear. Some of the 
additional remarks we made at the time are still 
unpublished. In general, the Lwdw mathemati- 
cians were on the whole somewhat reluctant to 
publish. Was it a sort of pose or a psychological 
block? 

If I had to name one quality which charac- 
terized the development of this school, made up 
of the mathematicians from the University [of 
Lwow] and the Polytechnic Institute, I would 
say that it was their preoccupation with the heart 
of the matter that forms mathematics. On a set 
theoretical and axiomatic basis we examined the 
nature of a general space, the general meaning 
of continuity, general sets of points in Euclidean 
space, general functions of real variables, a gen- 
eral study of the spaces of functions, a general 
idea of the notions of length, area and volume, 
that is to say, the concept of measure and the for- 
mulation of what should be called probability. 

In 1932 I was invited to give a short communi- 
cation at the International Mathematical Congress 
in Zurich. This was the first big international 
meeting I attended, and I felt very proud to have 
been invited. In contrast to some of the Polish 
mathematicians I knew, who were terribly im- 
pressed by western science. I had confidence in 
the equal value of Polish mathematics. Actu- 
ally this confidence extended to my own work. 
Von Neumann once told my wife, Francoise, that 
he had never met anyone with as much self- 
confidence-adding that perhaps it was some- 
what justified. 

By 1934 I had become a mathematician rather 
than an electrical engineer. It was not so much 
that I was doing mathematics, but rather that 
mathematics had taken possession of me . . . At 
twenty-five, I had established some results in 
measure theory which soon became well known. 
These solved certain set theoretical problems 
attacked earlier by Hausdorff, Banach, Kura- 
towski, and others. These measure problems 
again became significant years later in connec- 
tion with the work of Godel and more recently 
with that of Paul Cohen. I was also working 
in topology. group theory, and probability the- 
ory. From the beginning I did not become too 
specialized. Although I was doing a lot ofmath- 
ematics, I never really considered myself as only 
a mathematician. This may be one reason why 
in later life I became involved in other sciences. 

[Nevertheless] ever since I started learning 
mathematics I would say that I have spent- 
regardless of any other activity-on the average 
two to three hours a day thinking and two to three 
hours reading or conversing about mathematics. 
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Vita 

P R I N C E T O N  
- 

H A R V A R D  

W I S C O N S I N  

1934 Postdoctoral travels and studies in 
Vienna, Zurich, Paris, and Cambridge 
(England) 

1935 Scottish Book originates 

Returns to Poland. Receives letter of 
invitation to Institute for Advanced 
Study in Princeton 

December: Sails to America* 

1936-39 Academic years with Harvard Soci- 
ety of Fellows. Summers at home in 
Poland 

1939 Leaves home for the last time in the 
fall of 1939, accompanied by his 
young brother, Adam 

193940  Lecturer at Hazard 

1940-41 Instructor at University of Wiscon- 
sin. Meets C. J .  Evei-ett. Works with 
him on ordered groups and projective 
algebras 

1941 Becomes American citizen. Tries to 
volunteer in the U.S. Air Force 

1941-43 Assistant Professor at University of 
Wisconsin 

Stan in Warsaw. 1972 

Oxtoby and Stun at Hurvard, circa 1936 

In 1934, the international situation was be- 
coming ominous. Hitler had come to power in 
Germany. His influence was felt indirectly in 
Poland. There were increasing displays of in- 
flamed nationalism . . . and anti-Semitic demon- 
strations . . . For years my uncle Karol Auerbach 
had been telling me: "Learn foreign languages!'' 
Another uncle, Michael Ulam, an architect, urged 
me to try a career abroad. For myself, uncon- 
scious as I was of the-realities of the situation in 
Europe, I was prompted to arrange a longish trip 
abroad . . . to meet other mathematicians . . . and 
in my extreme self-confidence, try to impress the 
world with some new results. My parents were 
willing to finance the trip. 

It was only toward the end of 1934 that I 
entered into correspondence with von Neumann. 
He was then in the United States, a very young 
professor at the Institute for Advanced Study in 
Princeton. I wrote him about some problems in 
measure theory. He had heard about me from 
Bochner, and in his reply he invited me to come 
to Princeton for a few months, saying that the In- 
sititue could offer me a $300 stipend. I met him 
[in Warsaw] shortly after my return from England 
. . . Von Neumann appeared quite young to me, 
although he was . . . some five or six years older 
than I . . . At once I found him congenial. His 
habit of intermingling funny remarks, jokes, and 
paradoxical anecdotes or observations of people 
into his conversation, made him far from remote 
or forbidding. 

[At the Institute] I went to lectures and semi- 
nars, heard Morse, Veblen, Alexander, Einstein, 
and others, but was surprised how little people 
talked to each other compared to the endless 
hours in the coffee houses in Lw6w . . . There 
was another way in which the Princeton atmo- 
sphere was entirely different from what I ex- 
pected: it was fast becoming a way station for 
displaced European scientists. In addition, these 
were still depression days and the situation in 
universities in general and in mathematics in par- 
ticular was very bad. 

One of the luckiest accidents of my life hap- 
pened the day G. D. Birkhoff came to tea at von 
Neumann's house while I was visiting there . . . 
We talked and. after some discussion of math- 
ematical problems, he turned to me and said, 
"There is an organization at Harvard called the 
Society of Fellows. It has a vacancy. There is 
about one chance in four that if you were inter- 
ested and applied you might receive this appoint- 
ment." 

I came to the Society of Fellows during its 
first few years of existence . . . I was given a two- 
room suite in Adams House, next door to another 
new fellow in mathematics by the name of John 
Oxtoby . . . He was interested in some of the same 
mathematics I was: in set theoretical topology, 
analysis, and real function theory. Right off, we 
started to discuss problems concerning the idea 
of "category" of sets. "Category" is a notion in 
a way parallel to but less quantitative than the 
measure of sets . . . We quickly established some 
new results, and the fruits of our conversations 
. . . were published as two notes in Fz~riiianl~t~ta. 
We followed this with an ambitious attack on the 
problem of the existence of ergodic transfonna- 
tions. The ideas and definitions connected with 
this had been initiated in the nineteenth century 
by Boltzmann. 
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Vita 

Birkhoff, in his trail-breaking papers and in 
his book on dynamical systems, had defined the 
notion of "transitivity." Oxtoby and I worked on 
the completion to the existence of limits in the 
ergodic theorem itself . . . We wanted to show 
that on every manifold (a space representing the 
possible states of a dynamical system)-the kind 
used in statistical mechanics-such ergodic be- 
havior is the rule . . . It took us more than two 
years to break through and to finish a long paper, 
which appeared in The Annals of Mathematics in 
1941 and which I consider one of the more im- 

- portant results that 1 had a part in. 

While I was at Harvard, Johnny came to see 
me a few times, and I invited him to dinner at the 
Society of Fellows. We would also take automo- 
bile drives and trips together during which we 
discussed everything from mathematics to litera- 
ture and talked without interruption while still 
paying attention to our surroundings. Johnny 
liked this kind of travel very much. 

Each summer between 1936 and 1939. I re- 
turned to Poland for a full three months. The first 
time, after only a few months' stay in America, 
I was surprised that street cars ran. electricity 
and telephones worked. 1 had become imbued 
with the idea of America's absolute technological 
superiority and unique "know-how." My main 
emotional reactions were, of course, related to 
reunion with my family and friends, and the fa- 
miliar scenes of Lw6w. followed by a longing 
to return to the free and hopeful "open-ended" 
conditions of life in America. 

I had to go to the American consulate in 
Warsaw each summer I was in Poland to apply 
for a new visitor's visa in order to return to the 
United States. Finally, the consul said to me, 

"Instead of coming here every summer for a new 
visa, why don't you get an immigration visa'?" It 
was lucky that I did, for just a few months later 
these became almost impossible to obtain. 

1 Claire, at 14 months, and Frc.ngoise, 

[My brother] Adam and I were staying in a 
hotel on Columbus Circle [in New York] . . . It 
must have been around one or two in the morn- 
ing when the telephone rang . . . my friend the 
topologist Witold Hurewicz began . . . "Warsaw 
has been bombed, the war has begun." That is 
how I learned about the beginning of World War 
I1 . . . Adam was asleep; I did not wake him. 
There would be time to tell him the news in the 
morning. Our father and sister were in Poland, 
so were many other relatives. At that moment, 
I suddenly felt as if a curtain had fallen on my 
past life . . . There has been a different color and 
meaning to everything ever since. 

Birkhoff helped me to secure the job [at the 
University of Wisconsin] . . . Almost at once 
I met congenial, intelligent people not only in 
mathematics and science, but also in the human- 
ities and arts . . . So I found Madison not at all 
the intellectual desert I had feared it would be 
. . . I was given a light teaching load . . . But the 
very expression . . . implied physical effort and 
fatigue-two things I have always been afraid 
of, lest they interfere with my own thinking and 
research. 

Something else happened to make Madison 
most important to me. It  was there that I mar- 
ried a French girl, who was an exchange stu- 
dent at Mount Holyoke College and whom I had 
met in Cambridge, Francoise Aron. Marriage, of 
course, changed my way of life. greatly influenc- 
ing my daily mode of work, my outlook on the 
world, and my plans for the future. 

It was in Madison that I met C. J.  Everett . . , 
[He] and I hit it off immediately. As a young 
man he was already eccentric, original, with an 
exquisite sense of humor, wry, concise, and caus- 
tic in his observations. He was totally devoted to 
mathematics . . . I found in him much that resem- 
bled my friend Mazur in Poland, the same kind 
of epigrammatic comments and jokes . . . We col- 
laborated on difficult problems of "orderw-the 
idea of order for elements in a group. In our 
mathematical conversations, as always, I was the 
optimist, and had some general, sometimes only 
vague ideas. He supplied the rigor, the inge- 
nuities in the details of the proof, and the final 
constructions. Everett exhibited a trait of mind 
whose effects are, so to speak, non-additive: per- 
sistence in thinking. Thinking continuously . . . 
for an hour, is at least for me-and I think for 
many mathematicians-more effective than do- 
ing it in two half-hour periods. It is like climb- 
ing a slippery slope. If one stops, one tends to 
slide back. Both Everett and Erdos have this 
characteristic of long-distance stamina. 

I was asked t o  run the mathematics collo- 
quium, which took place every two weeks . . . 
The colloquium was run differently from what I 
had known in Poland, where speakers gave ten- 
or twenty-minute informal talks. At Madison 
they were one-hour lectures. There is quite a 
difference between short seminar talks like those 
at our math society in Lwow, and the type of 
lecture which necessitates talking about major ef- 
forts. The latter were better prepared, of course, 
but their greater formality removed some of the 
spontaneity and stimulation of the shorter ex- 
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Van Neumann wrote this letter to Stan in long- 
hand. 11 is reproduced here in typewritten f0m-1 to 
decrease its size and increase its legibility. 

L O S  A L A M O S  

~ ~ v e r n b e r  9 3 

1944 February 4: Arrives in  Lax A1amo.y 

n0a.r S tan ,  

Joins Edward Teller's group in the 
Theoreticul Divifinn under Han.7 
Bethe 

H e r s  group is transferred to 
Fermi's Division 

--- 
I am very g lad  t h a t  M r .  Hughes "and a l l  he  s t a n d s  f o r "  have 
come through.  I t o l d  them about you. because you wrote m e  
severa l  t imes  i n  t h e  p a s t  t h a t  you d e f i n i t e l y  wanted a war j o b ,  
and because t h i s  i s  a ve ry  r e a l  p o s s i b i l i t y ,  where you cou ld  do 
v e f f e c t i v e  and u s e f u l  work. . --d 

T pro jec t  i n  q u e s t i o n  is  exceedingly impor tan t .  probably beyond 
a l l  a d j e c t i v e s  I could a f f i x  t o  i t .  It i s  very  i n t e r e s t i n g ,  t o o ,  
and the  t h e o r e t i c a l  (and o t h e r )  p h y s i c i s t s  connected. wi th  it a r e  
probably t h e  b e s t  group e x i s t i n g  anywhere a t  t h i s  moment. 1t 
does r e q u i r e  sone computational work, b u t  t h e r e  is  no doubt t h a t  
everybody w i l l  be most g l a d  and g i v e  you a l l  t h e  encouragement 
you can wish i n  doing o r i g i n a l  r e s e a r c h  on t h e  s u b j e c t ,  f o r  which 
the re  is ample oppor tun i ty .  I can a l s o  a s s u r e  you of my own 
c n o ~ e r a t i o n  i n  t h i s  r e s p e c t .  --  - 

The secrecy requirements  of t h i s  p r o j e c t  a r e  r a t h e r  extreme,  and 
i t  w i l l  probably n e c e s s i t a t e  your and your f a m i l i e s  e s s e n t i a l l y  
s taying on t h e  premises (except  f o r  v a c a t i o n s )  a s  long a s  you 
h o s e  t o  be  a s s o c i a t e d  w i t h  I t .  

TO r e p e a t :  I f  you want war work, t h i s  is probably a q u i t e  
except ional  oppor tun i ty .  

I may be a b l e  t o  g ive  you a b e t t e r  i d e a  o r a l l y ,  and I would be  
g a d  t o  do s o ,  i f  w e  can meet somewhere b e f o r e  you answer---but I 
suppose t h a t  t h e r e  i s  no t i m e .  (I w i l l  be  i n  Pr ince ton  on 13-15 
2nd n Washington on 16-17 of t h i s  month.) -- 

So you r e a l l y  count on a quLte s h o r t  war? I d o n ' t  s e e  t h a t  from 
a -purely t e c h n i c a l  s t andpoin t  Germany need be broken b e f o r e  
next f a l l . .  O f  course a c o l l a p s e  may come any day from now on f o r  
moral and. po l l i t coa l  reasons ,  bu t  I can1  t [know1 how t o  Judge 
t h a t ,  wi thout  knowing muoh more about t h e  p resen t  s t a t e  and 
e f f i c i e n c y  of t h e  Nazi p o l i t L c a 1  machine. 

And t h e r e  is s t i l l  a y e a r ' s  worth of A s i a t i c  war a f t e r  t h a t .  
Anyhow, qvii v i v r a  v e r r a  . . . 

seems t h a t  Morgenstern's and my book On "games" w i n  be  out  
i n  3 months o r  So. 

Best r e g a r d s ,  and looking forward t o  see ing  you soon---here o r  
"there"--- 

as ever  

Van Neumann, circa 1950 

During the late spring of 1943, I wrote to von 
Neumann about the possibility of war work . . . 1 
received an official invitation to join an uniden- 
tified project that was doing important work, the 
physics having something to do with the interior 
of stars. The letter inviting me was signed by 
the famous physicist Hans Bethe. 



On the terrace of Fuller Lodge. Clockwise from 
lower left: Davis, Metropolis, Ulum an unidenti- 
fied person, McMiIlan, and de Hoffman 

Finally I learned that we were going to New 
Mexico, to a place not far from Santa Fe. Never 
having heard about New Mexico, I went to the 
library and borrowed the Federal Writers' Project 
Guide to New Mexico. At the back of the book, 
on the slip of paper on which borrowers signed 
their names, I read the names of Joan Hinton, 
David Frisch, Joseph McKibben, and all the other 
people who had been mysteriously disappearing 
[from Madison] to hush-hush war jobs without 
saying where. I had uncovered their destination 
in a simple and unexpected fashion. It is next 
to impossible to maintain absolute secrecy and 
security in war time. 

[Upon my arrival at Los Alamos, Johnny] 
took me aside and . . . told me of all the possibil- 
ities which had been considered. of the problems 
relating to the assembling of fissionable materi- 
als, about plutonium (which did not yet physi- 
cally exist even in the most microscopic quanti- 
ties at Los Alamos). I remember very well, when 
a couple of months later I saw Robert Oppen- 
heimer running* excitedly down a corridor hold- 
ing a small vial in his hand, with Victor Weiss- 
kopf trailing after him. He was showing some 
mysterious drops of something at the bottom of 
the vial. Doors opened, people were summoned, 
whispered conversations ensued, there was great 
excitement. The first quantity of plutonium had 
just arrived at the lab. 

It is one thing to know about physics ab- 
stractly, and quite another to have a practical 
encounter with problems directly connected with 
experimental data . . . I found out that the main 
ability to have was a visual, and also an almost 
tactile, way to imagine the physical situations, 
rather than a merely logical picture of the prob- 
lems . . . Very few mathematicians seem to pos- 
sess [such an imagination] to any great degree. 

Left to right: van Neumann, Feytvnan, Ulum at --' '-* 

Bandolier, 1949 
A discussion with von Neumann . . . [in] early 

1944 took several hours, and concerned ways 
to calculate the course of an implosion more 
realistically than the first attempts outlined by 
him and his collaborators. The hydrodynami- 
cal problem was simply stated, but very difficult 
to calculate-not only in detail, but even in or- 
der of magnitude . . . In this discussion I stressed 
pure pragmatism and the necessity for attempt- 
ing to get a heuristic survey of the general prob- 
lem by simpleminded brute force-that is, more 
realistic, massive numerical work . . . With the 
available computing facilities, the accuracy of 
the necessary numerical work could not be sat- 
isfactory. This was one of the first reasons for 
pressing for the development of electronic com- 
puters. 

Strangely enough, the actual working prob- 
lems did not involve much of the mathematical 
apparatus of quantum theory although it lay at 
the base of the phenomena, but rather dynamics 
of a more classical kind-kinematics, statistical 
mechanics, large-scale motion problems, hydro- 
dynamics, behavior of radiation . . . Compared to 
quantum theory the project work was like applied 
mathematics as compared with abstract mathe- 
matics. 

[Edward] Teller, in whose group I was sup- 
posed to work, talked to me on that first day 
about a problem in mathematical physics that 
was part of the necessary theoretical work in 
preparation for developing the idea of a "super" 
bomb, as the proposed thermonuclear hydrogen 
bomb was then called . . . Teller's problem con- 
cerned the interaction of an electron gas with 
radiation . . . This was the first technical problem 
in theoretical physics I had ever tackled in my 
l ife. .  . It was a messy little job. Edward was not 
satisfied with my rather elementary derivations. 

After this first work on Edward's problem, I 
spread out my interests to other related questions, 
one being the problem of statistics of neutron 
multiplication. This was more tangible for me 
from the purely mathematical side. I discussed 
such problems of branching and multiplying pat- 
terns with David Hawkins. 

Fermi was short, sturdily built, strong in arms 
and legs. and rather fast moving. His eyes, dart- 
ing at times, would be fixed reflectively when he 
was considering some questions.. . He would try 
to elucidate other persons' thoughts by asking 
questions in a Socratic manner, yet more con- 
cretely than in Plato's succession of problems. 

I think he had a supreme sense of the im- 
portant. He did not disdain work on the so- 
called smaller problems; at the same time, he 
kept in mind the order of importance of things 
in physics. This quality is more vital in physics 
than in mathematics, which is not so uniquely 
tied to "reality." Strangely enough, he started as 
a mathematician. Some of his first papers with 
very elegant results were devoted to the prob- 
lem of ergodic motion. When he wanted to, he 
could do all kinds of mathematics. To my sur- 
prise, once on a walk he discussed a mathemat- 
ical question arising from statistical mechanics 
which John Oxtoby and I had solved in 1941. 

[Fermi] could be also quite a tease. I remem- 
ber his Italian inflections when he taunted Teller 
with statements like "Edward-a how com-a the 
Hungarians have not-a invented anythingc?" 

Los Alat?zos Science Special Issue I987 
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clockwise from lower left: An unidentified person, 
Mark, Mutthias, Ulam, Evans, Cowan, Metropolis 

Vf tii 
L O S  A L A M O S  

July 16: Trinity Test 

September: Moves to Los Angeles as 
Associate Professor at University of 
Southern California 

January: Acute attack of encephalitis 

April: Attends secret conference at 
Los Alamos 

May: Returns to Los Alamos 

C.  J.  Everett joins the Laboratory 

Seminars on the Monte Carlo Method 
and hydrodynamical calculations 

Beginning of heuristic studies on elec- 
tronic computing machines 

Ulam and Everett develop theory of 
multiplicative processes 

1949 Russian atomic bomb test 

Truman directs AEC to proceed with 
work on the hydrogen bomb 

One thing that relieved the repetition and al- 
ternation of work, intellectual discussions, even- 
ing gatherings, social family visits and dinner 
parties, was when a group of us would play poker 
about once a week. The group included Metropo- 
lis, Davis, Calkin, Flanders, Langer, Long, Kono- 
pinski, von Neumann (when he was in town), 
Kistiakowski sometimes, Teller, and others. We 
played for small stakes; the naivete of the game 
and the frivolous discussions laced with earthy 
exclamations and rough language provided a bath 
of refreshing foolishness from the very serious 
and important business that was the raison d'etre 
of Los Alamos. 

The Trinity test, Hiroshima. V-J Day, and the 
story of Los Alamos exploded over the world al- 
most simultaneously with the A-Bomb. Publicity 
over the secret wartime Project filled the news- 
papers and its administrative heads were thrown 
in the limelight. 

As I was reading [such items,] something else 
flashed through my mind, a story of a "pension" 
in Berlin before the war . . . One man was tak- 
ing most of the asparagus that was on the platter. 
Whereupon another man stood up shyly and said: 
'Excuse me, Mr. Goldberg, we also like aspara- 
gus!" And the expression "asparagus" became a 
code word in our private conversations for try- 
ing to obtain an unduly large share of credit for 
scientific work or any other accomplishment of a 
joint or group character. Johnny loved this story 
. . . We would plan to write a twenty-volume trea- 
tise on "Asparagetics through the Ages" . . . But 
levities like these could hardly alleviate the gen- 
eral feeling of foreboding upon entering into the 
era of history that would be called the Atomic 
Age. 

In early September of 1945, I went to Los 

It was a stormy day; on the walk from the 
bus to the house in Balboa the violent winds al- 
most choked me. That same night I developed 
a fantastic headache . . . The following night . . . 
I noticed that my speech was confused, that I 
was barely able to form words. I tried to talk 
. . . but it was mostly a meaningless mumble-a 
most frightening experience . . . A severe attack 
of brain troubles began, which was to be one 
of the most shattering experiences of my life . . . 
Many of the recollections of what preceded my 
operation are hazy. Thanks to what Frangoise 
told me later I was able to put it together. . . She 
feared I was dying and made a frantic telephone 
call to the surgeon, who decided the operation 
should be performed immediately. This probably 
saved my life; the emergency operation relieved 
the severe pressure on my brain which was caus- 
ing all the trouble . . . The illness was tentatively 
diagnosed as a kind of virus encephalitis. But 
the disquietude about the state of my mental fac- 
ulties remained with me for a long time, even 
though I recovered speech completely. 

Many friends came to visit me . . . Metropolis 
came all the way from Los Alamos. His visit 
cheered me greatly. I found out that the security 
people in Los Alamos had been worried that in 
my unconscious or semi-conscious states I might 
have revealed some atomic secrets. 

As I was preparing to leave [the hospital], 
. . . Erdos appeared at the end of the hall . . . 
In the car on the way home from the hospital, 
Erdos plunged immediately into a mathematical 
conversation. I made some remarks, he asked 
me about some problem, I made a comment, and 
he said: "Stan, you are just like before." These 
were reassuring words. 

Stun and Everett in Madison, 
1942 

Angeles to look for housing and to prepare o 
move from Los Alamos. 
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In the days that followed we had more and 
more mathematical discussions and longer and 
longer walks on the beach. Once he stopped to 
caress a sweet little child and said in his special 
language: "Look, Stan! What a nice epsilon." 
A very beautiful young woman, obviously the 
child's mother, sat nearby, so I replied, "but look 
at the capital epsilon." This made him blush with 
embarrassment. 

Two seminar talks I gave shortly after my re- 
turn [to Los Alamos] turned out to have good or 
lucky ideas and led to successful further devel- 
opments. One was on what was later called the 
Monte Carlo method, and the other was about 
some new possible methods of hydrodynamical 
calculations. Both talks laid the groundwork for 
very substantial activity in the applications of 
probability theory and in the mechanics of con- 
tinua. [Both ideas required extensive machine 
computation.] 

Computing machines came about through the 
confluence of scientific and technological devel- 
opments. On one side was the work in mathe- 
matical logic, in the foundations of mathematics, 
in the detailed study of formal systems, in which 
von Neumann played such an important role; on 
the other was the rapid progress of technological 
discoveries in electronics which made it possible 
to construct electronic computers. 

Almost immediately after the war Johnny and 
I also began to discuss the possibilities of using 
computers heuristically to try to obtain insights 
into questions of pure mathematics. By produc- 
ing examples and by observing the properties of 
special mathematical objects one could hope to 
obtain clues as to the behavior of general state- 
ments which have been tested on examples. 

The Garnow cartoon 

It was in 1949 . . . that George Gamow, whom 
I had met briefly in Princeton before the war, 
came to Los Alamos for a lengthy visit . . . There 
was nothing dry about him. A truly "three- 
dimensional" person, he was exuberant, full 
of life, interested in copious quantities of good 
food, fond of anecdotes, and inordinately given 
to practical jokes. 

Banach once told me. "Good mathematicians 
see analogies between theorems or theories, the 
very best ones see analogies between analogies." 
Gamow possessed this ability to see analogies 
between models for physical theories to an al- 
most uncanny degree . . . It was along the great 
lines of the foundations of physics, in cosmol- 
ogy, and in the recent discoveries in molecular 
biology that his ideas played an important role. 
His pioneering work in explaining the radioac- 
tive decay of atoms was followed by his theory 
of the explosive beginning of the universe, the 
"big bang" theory (he disliked the term by the 
way), and the subsequent formation of galaxies. 

Shortly after President Truman's announce- 
ment directing the AEC to proceed with work 
on the H-Bomb. E. 0 .  Lawrence and Luis Al- 
varez visited Los Alamos from Berkeley and 
started discussions with Bradbury and then with 
Gamow, Teller, and myself about the feasibility 
of constructing a '"super." This visit played a 
part in the politics of this enterprise. 

Several different proposals of ideas existed on 
how to initiate the thermonuclear reaction, using 
fission bombs as starter. One of Gamow's was 
called "the cat's tail." Another was Edward's 
original proposal. Gamow drew a humorous 
cartoon with symbolic representations of these 
various schemes. In it he squeezes a cat by 
the tail, I spit in a spittoon, and Teller wears 
an Indian fertility necklace, which according to 
Gamow is the symbol for the womb. a word he 
pronounced "vombb." This cartoon has appeared 
among the illustrations in his autobiography, 
World Line, published by The Viking Press in 
1970. 

A first committee was formed to organize 
all work on the 'super' and investigate all pos- 
sible schemes for constructing it. The com- 
mittee's work was directed by Teller, as chair- 
man, Gamow and myself . .  . Both Gamow and I 
showed a lot of independence of thought in our 
meetings and Teller did not like this very much. 
Not too surprisingly, the original 'super' direct- 
ing committee soon ceased to exist. 
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1 F A c u ~ ~ e  D E s  S C E E N ~ ~ ~  i t an t l~  At once at first, Edward but took enthusiastically up my suggestions, after a hes- few 

to hope - . Teller lost no time in presenting these 
ideas, perhaps with most of the emphasis on the 
second half of our paper, at a General Advisory 

," ,, sm-,. L, ,,,",", ,+"A.n ,. #.....I d ,  I d  -.L-sG#- 
Committee meeting in Princeton which was to 
become quite famous because it marked the turn- 

L O S  A L A M O S  

Hand culculutions by Ulam and Ev- 
erett suggest that ignition scheme for 
"super" won't work 

Results of calculations confirmed by 
i70n Neumann and Evans on Prince- 
ton computer 

Ulam  suggest.^ new approach to igni- 
tion 

Tel l~i-  suggests a related approach 
and presents it to the General Advi- 
sory Committee 

Fall semester: Visiting Professor a[ 
Harvard 

Begins serious dis~~ussions of ~~ellular 
automata with von Neumann 

Summer: Studies nonlinear systems 
with F e m i  and Pasta 

Fermi dies 

Visiting Professor at Mussuchusetts 
Znstitur~ of Technology 

Still Teller kept on hinting that not enough 
work was being done on his original scheme for 
the ignition of the "super" . . . In collaboration 
with my friend Everett one day I decided to try 
a schematic pilot calculation which could give 
an order of magnitude, at least, a "ballpark" 
estimate of the promise of his scheme . . . Before 
we started this calculation of the progress of a 
thermonuclear reaction (burning in a mass of 
deuterium or deuterium-tritium mixture), Everett 
and 1 had done a lot of work on probablility 
questions connected with the active assemblies 
of uranium and with neutron multiplications. We 
worked out a theory of multiplica~ive processes, 
as we called it. (Now the preferred name is 
"branching processes.") . . . Our calculation . . . 
threw grave doubts on the prospects of Edward's 
original approach to the initial ignition conditions 
of the "super." 

As the results of the von Neumann-Evans cal- 
culation on the big electronic Princeton machine 
slowly started to come in, they confirmed broadly 
what we had shown. There, in the course of the 
calculation, in spite of an initial, hopeful-looking 
"flare up," the whole assembly started slowly to 
cool down. Every few days Johnny would call 
in some results. "Icicles are forming,'' he would 
say dejectedly. 

Perhaps the change came with a proposal I 
contributed. I thought of a way to modify the 
whole approach by injecting a repetition of cer- 
tain arrangements. Unfortunately, the idea or set 
of ideas involved is still classified and cannot be 
described here, 

ing point in the development of the H-bomb. 

Contrary to those people who were violently 
against the bomb on political, moral or socio- 
logical grounds, I never had any questions about 
doing purely theoretical work . . . I felt that one 
should not initiate projects leading to possibly 
horrible ends. But once such possibilities exist, 
is it not better to examine whether or not they 
are real? An even greater conceit is to assume 
that if you yourself won't work on it, it can't be 
done at a11 . . . When I reflected on the end re- 
sults, they did not seem so qualitatively different 
from those possible with existing fission bombs. 
After the war it was clear that A-bombs of enor- 
mous size could be made. The thermonuclear 
schemes were neither very original nor excep- 
tional. Sooner or later the Russians or others 
would investigate and build them. 

The Oppenheimer Affair, which grew out of 
the violent hydrogen-bomb debate-even though 
the animosity between Strduss and Oppenheimer 
had personal and perhaps petty origins-greatly 
affected the psychological and emotional role of 
scientists. 

A sketch by Frangoise of Stai1's .favorite readi~tg 
pusition L 

Los Alut~~os S ~ e n c e  Special Issue 1987 
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Oppenheimer's opposition to the development 
of the H-bomb were not exclusively on moral, 
philosophical, or humanitarian grounds. 1 might 
say cynically that he struck me as someone who, 
having been instrumental in starting a revolution 
(and the advent of nuclear energy does merit this 
appellation), does not contemplate with pleasure 
still bigger revolutions to come . . . 

It seems to me this was the tragedy of Oppen- 
heimer. He was more intelligent, receptive, and 
brilliantly critical than deeply original. Also he 
was caught in his own web, a web not of poli- 
tics but of phrasing. Perhaps he exaggerated his 
role when he saw himself as "Prince of Dark- 
ness, the destroyer of Universes." Johnny used 
to say, "Some people profess guilt to claim credit 
for the sin." 

Computers were brand-new; in fact the Los 
Alamos MANIAC was barely finished. The 
Princeton von Neumann machine had met with 
technical and engineering difficulties that had 
prolonged its perfection. 

As soon as the machines were finished, Fermi, 
with his great common sense and intuition, rec- 
ognized immediately their importance for the 
study of problems in theoretical physics, astro- 
physics, and classical physics. We discussed 
this at length . . . After deliberating about pos- 
sible problems, we found a typical one requiring 
long-range prediction and long-time behavior of 
a dynamical system. It was the consideration of 
an elastic string with two fixed ends, subject not 
only to the usual elastic force but having, in ad- 
dition, a physically correct small non-linear term. 

Our problem turned out to have been felic- 
itously chosen. The results were entirely dif- 
ferent qualitatively from what even Fermi, with 
his great knowledge of wave motions, had ex- 
pected. The original objective had been to see 
at what rate the energy of the string, initially put 
into a single sine wave (the note was struck as 
one tone), would gradually develop higher tones 
with the harmonics, and how the shape would 
finally become "a mess" both in the form of the 
string and in the way the energy was distributed 
among higher and higher modes. Nothing of the 
sort happened. To our surprise the string started 
playing a game of musical chairs, only between 
several low notes, and perhaps even more amaz- 
ingly, after what would have been several hun- 
dred ordinary up and down vibrations, it came 
back almost exactly to its original . . . shape. 

I know that Fermi considered this to be, as 
he said, "a minor discovery." And when he was 
invited a year later to give the Gibbs Lecture, he 
intended to talk about this. He became ill before 
the meeting. 

These were the days of defense research con- 
tracts. Even mathematicians frequently were re- 
cipients. Johnny and I commented on how in 
some of their proposals scientists sometimes de- 
scribed how useful their intended research was 
for the national interest, whereas in reality they 
were motivated by bonafide scientific curiosity 
and an urge to write a few papers. Sometimes 
the utilitarian goal was mainly a pretext. This 
reminded us of the story of the Jew who wanted 
to enter a synagogue on Yom Kippur. In or- 
der to sit in a pew he had to pay for his seat, 
so he tried to sneak in by telling the guard he 
only wanted to tell Mr. Blum inside that his 
grandfather was very ill. But the guard refused, 
telling him: "Ganev, Sie wollen beten" ["You 
thief! You really want to pray"]. This, we liked 
to think, was a nice abstract illustration of the 
point. 

Just after Johnny was offered the post of AEC 
Commissioner and before he accepted and be- 
came one in 1954 we had a long conversation. 
He had profound reservations about his accep- 
tance because of the ramifications of the Oppen- 
heimer Affair . . . In a two-hour visit to Frijoles 
Canyon one afternoon he bared his doubts and 
asked me how I felt about it. He joked, "1'11 be- 
come a commissionnaire." (In French the term is 
used to mean errand boy.) But he was flattered 
and proud that although foreign born he would 
be entrusted with a high governmental position 
of great potental influence in directing large areas 
of technology and science. 

Our usual conversations were either about 
mathematics or about his new interest in a theory 
of automata. These conversations had started in 
a sporadic and superficial way before the war at 
a time when such subjects hardly existed. After 
the war and before his illness we held many dis- 
cussions on these problems. I proposed to him 
some of my own ideas about automata consisting 
of cells in a crystal-like arrangement. 

It is evident that Johnny's ideas on a future 
theory of automata and organisms had roots that 
went back in time, but his more concrete ideas 
developed after his involvement with electronic 
machine$. I think that one of his motives for 
pressing for the development of electronic com- 
puters was his facination with the working of the 
nervous system and the organization of the brain 
itself. After his death some of his collaborators 
collected his writings on the outlines of the the- 
ory of automata. 

Von Neumann's reputation and fame as a 
mathematician and as a scientist have grown 

steadily since his death. ,More than his direct 
influence on mathematical research, the breadth 
of his interests and of his scientific undertakings, 
his personality and his fantastic brain are becom- 
ing almost legendary. 

Now Banach, Fermi, von Neumann were dead 
-the three great men whose intellects had im- 
pressed me the most. These were sad times in- 
deed. 
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Morgenstern and Stan at Bandelier, I949 

L O S  A L A M O S  

B O U L D E R  

February 8: Von Neumann dies in 
Walter Reed Hospital 

Research advisor, with John Manley, 
to Norris Bradbury, Director of Los 
Alamos 

Publication of A Collection of Mathe- 
matical Problems 

Full semester: Visiting Professor at 
University of Colorado 

Winter quarter: Visiting Professor at 
University of Cal$ornia, San Diego 

Visiting Professor of Mathematics, 
and later Chairman of Mathematics 
Department, at University of Col- 
orado. Spends vacations in Santa Fe 

Retires from Los Alumos but main- 
tains loose connection with the Labo- 
ratory as a dollar-a-year consultant 

Professor of Biomathematics at Uni- 
versity of Colorado Medical School 

Sabbatical year at Massach 
stitute of Technology, Univc 
Paris, and Los Alamos 

As a result of my work on the hydrogen bomb, 
I became drawn into a maze of involvements. 
These had to do precisely with government sci- 
ence and with work as a member of various 
Space and Air Force committees. Also, in some 
circles I became regarded as Teller's opponent, 
and I suspect I was consulted as a sort of coun- 
terweight. Some of these political activities in- 
cluded my stand on the Test Ban Treaty . . . The 
cartoonist Herblock drew in the Washington Post 
a picture of the respective positions of Teller and 
me in which I fortunately appeared as the "good 
guy." 

The idea of nuclear propulsion of space vehi- 
cles was born as soon as nuclear energy became 
a reality . . . I think Feynman was the first in Los 
Alamos during the war to talk about using an 
atomic reactor which would heat hydrogen and 
expel the gas at high velocity. A simple calcula- 
tion shows that this would be more efficient than 

At the same time, I was continuing my own 
work. After Femi's death Pasta and I decided 
to continue exploratory heuristic experimental 
work on electronic computers in mathematical 
and physical problems . . . 

The problem of clusters of stars was I think 
the first study of this nature using computers. We 
took a great number of mass points representing 
stars in a cluster. The idea was to see what would 
happen in the long-range time scale of thousands 
of years to the spherical-looking cluster whose 
initial conditions imitated the actual motions of 
such stars. 

expelling the products of chemical reactions. 
I became involved with two such projects . . . 

The first was Project Rover, a nuclear-reactor 
rocket which was being designed in Los Alamos 
already quite a few years before the ~uss ian  
Sputnik, but with very limited funds. The second 
was a space vehicle, later named Orion. Around 
1955 Everett and I wrote a paper about a space 
vehicle propelled by successive explosions of 
small nuclear charges . . . 

When it was decided to do something in 
emest at,out project R ~ ~ ~ ~ ,  wieSner named a (Internat~onal Chess Master) and Stan, late slxtles 

Presidential Committee to look into the matter. I While such astrophysical caIcu1ations were 
was one of its members . . . The committee wrote going on, I began in an amateurish way to work 
a report which by faint praise, essentially con- on some questions of biology. After reading 
demned Project Rover to a de fact0 death by about the new discoveries in molecular biol- 
proposing to make it a purely theoretical study ogy which were coming fast, I became curi- 
without funds for experimental work or any in- ous about a conceptual role which mathematical 
vestment in construction. The physicist Bemd ideas could play in biology. 



Vita 

In 1960 my book, [A Collection of Mathe- 
matical Problern.~], was published. Many years 
ago Fran~oise asked Steinhaus what it was that 
made me what people seemed to consider a fairly 
good mathematician. According to her, Stein- 
haus replied: "C'est l'homme du monde qui pose 
le mieux les probli2mes." Apparently my repu- 
tation, such as it is, is founded on my ability 
to pose problems and to ask the right kind of 
questions, 

[In 19641 I met Gian-Car10 Rota, a mathe- 
matician who is almost a quarter-century younger 
than I . . . Our relationship is not built on our age 
difference. Rota claims that he is greatly influ- 
enced by me. So I coined the expression "influ- 
encer and influencee." Rota is one of my best 
influencees . . . 

Rota's personality is compatible with mine. 
His general education, active interest in philos- 
ophy (he is an expert on the work of Edmund 
Husserl and Martin Heidegger), and, above all, 
his knowledge of classical Latin and ancient his- 
tory, have made him fill the gap left by the loss 
of von Neumann. 

During the Los Alamos years I frequently took 
time off to return to academic life and around 
1965 I started visiting the University of Col- 
omdo on a more regular basis . . . In 1967 I de- 
cided to retire from Los Alamos and accept a 
professorship in Boulder . . . The University of 
Colorado was flourishing . . . and the mathemat- 
ics department experienced an explosive growth 
in size and quality. Besides Boulder was suffi- 
ciently close to Los Alamos . , . so I could con- 
tinue as a consultant and visit frequently . . . The 
mathematics department was acquiring excellent 
researchers . . ' [among them] a younger, bril- 
liant Pole, Jan Mycielski, a student of Steinhaus, 
whom I invited to accept a professorship. 

In 1967 . . . Mark Kac and I were invited 
to write a long article [for Britanizica Pel-spec- 
t i~ l e .~ , ]  . . . a semi-popular presentation of modem 
ideas and perspectives of , . . the great concepts 
of mathematics . . . Since then it has appeared 
separately under the title Mathmatics and Logic. 

Mark Kac had also studied in L W I ~ W ,  but since 
he was several years younger than I (and I had 
left when only twenty-six myself), I knew him 
then only slightly . . . After the war he visited Los 
Alamos, and we developed our scientific collab- 
oration and friendship . . . Mark is one of the 
very few mathematicians who possess a tremen- 
dous sense of what the real applications of pure 
mathematics are and can be . . . He was one of 
Steinhaus's best students. 

[After 1 retired from the University of Col- 
orado, we] sold our Boulder house and bought 
another one in Santa Fe, which has become our 
base. From Santa Fe I commute three or four 
times a week to the Los Alamos Laboratory. Its 
superb scientific library and computing facilities 
allow me to continue working . . . Dan Mauldin, 
a professor at North Texas State University [and 
I ]  are now collaborating on a collection of new 
unsolved problems. This book will have a dif- 
ferent emphasis from that of my Collection of 
Mathematical Problems. The new collection will 
deal more with mathematical ideas connected to 
theoretical physics and biological schemata. 

In the short span of my life great changes have 
taken place in the sciences . , . Sometimes I feel 
that a more rational explanation for all that has 
happened during my lifetime is that I am still 
only thirteen years old, reading Jules Verne or 
H. G. Wells, and have fallen asleep. 

It is still an unending source of surprise for 
me to see how a few scribbles on a blackboard 
or on a sheet of paper could change the course 
of human affairs. I became involved in the work 
on the atomic bomb, then in the work on the 
hydrogen bomb, but most of my life has been 
spent in more theoretical realms. 



Vita 

At the time of his death, st an is la^> M.  
Ufum N ~ U S  an elected Fellow of the American 
Academy of Arts and Sciences and an elected 
member of the National Academy of Sciences 
and the American Philosophical Society. He 

B O U L D E R  sat on the Board of Governors and the Sci- 
entific Advisory Committee of the Weizmann 

S A N T A  F E  Institute of Science (Rehovot, Israel) and the 
Board of the Jurzykowski Foundation (New 
York, New York). He belonged to the Polish 

1974-84 winter trimesters: Graduate Reseurch Mathematical Society, the American Mathemat- 
Professor, University of Florida ical Society, the American Physical Society, 

Retires from University of Colorado 

Visiting Professor of Biomathemat- 
ics, University of Colorado Medical 
School 

Visiting Professor at Neurosciences 
institute of Rockefeller Universio 

Fall semester: Visiting Professor at 
University of Cal$ornia, Davis 

Dies in Santa Fe on May 13 

and the American Association for the Advance- 
ment of Science. 

He held honorary degrees from the Univer- 
sity of New Mexico, the University of Pitts- 
burgh, and the University of Wisconsin and 
wus reci)ient of the Sierpinski Medal, the Her- 
itage Award, and the Polish Millenium Prize. 

He hod been a n~ew~be/-  undlor chuirw~un 
of the Committee on Innovations of the Na- 
tional Academy of Sciences, the Committee on 
Applications of Mathematics of the National 
Research Council, the Visiting Commmittee for 
Mathematics and the Visiting Committee for 
Applied Mathematics of Harvard University, 
the Gibbs Lecture Committee of the American 
Mathematical Society, and the Mathematics 
Research Committee of the Mathematical Asso- 
ciation of America. 

He had sensed us cunsz~ltunt to President 
Kennedy's Science Advisory Committee, Air 
Force General Twining's Space Research Com- 
mittee, IBM Corporation, Generd Atomic Cor- 
poration, North American Aviation Corporation, 
Hycon Corporation, and other organizations. 

Building in Lw&v in which the Ulam family 
resided, photographed after the war 
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ne morning in 1946 in Los 
Angeles, Stan Ulam, a newly 
appointed professor at the 
University of Southern Cali- 

fornia, awoke to find himself unable to 
speak. A few hours later he underwent 
an emergency operation. His skull was 
sawed open and his brain tissue sprayed 
with newly discovered antibiotics. The 
diagnosis~encephalitis, an inflammation 
of the brain. After a short convales- 
cence he managed to recover, apparently 
unscathed. 

In time, however, some changes in 
his personality became obvious to those 
who knew him. Paul Stein, one of his 
collaborators at Los Alamos, remarked 
that, while before his operation Stan 
had been a meticulous dresser, a dandy 
of sorts, afterwards he became visibly 

by Gian-Carlo Rota 

careless in the details of his attire, even 
though his clothing was still expensively 
chosen. 

When I met him, many years after 
the event, I could not help noticing that 
his trains of thought were unusual, even 
for a mathematician. In conversation he 
was livelier and wittier than anyone I 
had ever met, and his ideas, which he 
spouted out at odd intervals, were fasci- 
nating beyond anything I have witnessed 
before or since. However, he seemed to 
studiously avoid going into any details. 
He would dwell on a given subject no 
longer than a few minutes, then impa- 
tiently move on to something entirely 
unrelated. 

Out of curiosity I asked Oxtoby, 
Stan's collaborator in the thirties, about 
their working habits before his oper- 
ation. Surprisingly, Oxtoby described 

how at Harvard they would sit for hours 
on end, day after day, in front of the 
blackboard. Since I met him, Stan never 
did anything of the sort. He would per- 
form a calculation, even the simplest, 
only when he had absolutely no other 
way out. I remember once watching 
him at the blackboard trying to solve 
a quadratic equation. He furrowed his 
brow in rapt absorption, while scribbling 
formulas in his tiny handwriting. When 
he finally got the answer, he turned 
around and said with relief, "I feel I 
have done my work for the day." 

The Germans have aptly called Sitz- 
fleisch the ability to spend endless hours 
at a desk doing gruesome work. Sitz- 
fleisch is considered by mathematicians 
to be a better gauge of success than 
any of the attractive definitions of tal- 
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ent with which psychologists regale us 
from time to time. Stan Ulam was able 
to get by without any Sitzfleisch what- 
soever. After his bout with encephali- 
tis, he came to lean instead on his own 
unimpaired imagination for new ideas 
and on the Sitzfleisch of others for tech- 
nical support. The beauty of his insights 
and the promise of his proposals kept 
him amply supplied with young col- 
laborators always willing to lend (and 
sometimes risking to waste) their time. 

A crippling technical weakness cou- 
pled with an extraordinarily creative 
imagination is the drama of Stan Ulam. 
Soon after I met him, I was made to un- 
derstand that, as far as our conversations 
went, his drama would be a Forbidden 
Topic. Perhaps he discussed it with his 
daughter, Claire, the only person with 
whom he would occasionally have bru- 
tally frank discussions, but certainly not 
with anyone else. But he knew I knew, 
and I knew he knew I knew. 

tan Ulam was born into a family 
that stood as high on the social 
ladder as a Jewish family could at 

the time. He was the golden boy from 
one of the richest families of Lw6w. 
In central Europe the Ulam name was 
then a synonym of banking wealth, not 
unlike the Rothschilds' in western Eu- 
rope. He was educated by private tutors 
and in the best schools. As a child he 
already showed an unusual interest in 
astronomy ("I am star-struck," he would 
often tell me) and in physics. At the 
age of twelve he was reasonably fa- 
miliar with the outlines of the special 
theory of relativity, a great novelty at 
the time. In high school he was a top 
student, far too bright for his age. His 
quick wit got him good grades with lit- 
tle effort but lent free rein to his lazi- 
ness. 

The two authors he read thoroughly 
in his teens were Karl May and Anatole 
France. They had a formative influ- 

ence on his personality, and through- 
out his life he kept going back to them 
for comfort. From Karl May's numer- 
ous adventure novels (popular enough 
in the German-speaking world to be 
among the favorite books of both Ein- 
stein and Hitler) he derived the childlike 
and ever fresh feeling of wonder that is 
often found in great men. From Anatole 
France he took his man-of-the-world 
mannerisms, which in later life would 
endear him to young ladies. 

He kept a complete set of Karl May's 
novels (in German, the other language 
of his childhood) behind his desk un- 
til he died. He regretted that a Plkiade 
edition of Anatole France had not been 
published, which he could keep by his 
bedside. He often gave me paperbacks 
of Anatole France, bought on his fre- 
quent trips to Paris and dedicated with 
inscriptions urging me to read them. I 
regret to admit I haven't. 

There was never any doubt that he 
would study mathematics when, at age 
seventeen, he enrolled at Lw6w Poly- 
technic Institute. Shortly after classes 
started he discovered with relief that 
the mathematics that really mattered 
was not taught in the classroom, but 
was instead to be found alive in one 
of the large cafes in town, the Scot- 
tish Cafe. There the Lw6w mathemati- 
cians would congregate daily. Between 
a shot of brandy and a cup of coffee, 
they would pose (and often solve) what 
turned out to be some of the outstand- 
ing mathematical conjectures of their 
time, conjectures that would be dashed 

off on the marble of coffee tables in the 
late evenings, in loud and uninhibited 
brawls. 

The Lw6w school was made up of 
offbeat, undisciplined types. Stan's 
teacher Banach was an alcoholic, and 
his best friend Mazur was a Communist. 
They cultivated the new fields of mea- 
sure theory, set theory, and functional 
analysis, which at the time required 
very little background. The rival War- 
saw mathematicians, more conservative, 
looked down on the Lw6w mathemati- 
cians as amateurish upstarts, but the 
results of the Lw6w school soon came 
to be better known and appreciated the 
world over, largely after the publication 
of Banach's book on linear operators, 
in which Ulam's name is the most fre- 
quently mentioned. 

One day the amateur Ulam went one 
up on the Warsaw mathematicans, who 
cultivated the equally new field of al- 
gebraic topology. While chatting at 
the Scottish Cafe with Borsuk, an out- 
standing Warsaw topologist, he saw in a 
flash the truth of what is now called the 
Borsuk-Ulam theorem. Borsuk had to 
commandeer all his technical resources 
to prove it. News of the result quickly 
swept across the ocean, and Ulam be- 
came an instant topologist. 

Stan took to cafe-mathematics like a 
fish to water. He quickly became the 
most daring of the Lw6w mathemati- 
cians in formulating bold new math- 
ematical conjectures. Almost all his 
guesses of that time have been proved 
true and are now to be found as theo- 
rems scattered in graduate textbooks. 

In the casual ambiance of the Scot- 
tish Cafe, Stan blossomed into one of 
the most promising mathematicians of 
his generation. He also began to dis- 
play the contradictory traits in behavior 
that after his operation were to become 
dominant: deep intuition and impatience 
with detail, playful inventiveness and 
dislike of prolonged work. He began to 
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view mathematics as a game, one that 
a well-bred gentleman should not take 
too seriously. His insights have opened 
whole new areas of mathematics, all of 
them still actively cultivated today, but 
he himself could not bear to give his 
discoveries more than a passing interest, 
and at times he would make merciless 
fun of those who did take them too seri- 
ously. 

The papers in mathematics that he 
wrote by himself date back to this pe- 
riod. Most were written in one sitting, 
often in a night's work, probably in re- 
sponse to some colleague's challenge at 
the Scottish Cafe. Much of his present 
reputation as a mathematician rests on 
these short, brilliant notes. His measur- 
able cardinals, the best idea he had in 
this period, are still the mainspring of 
much present work in set theory. More 
often, however, his flashes of original- 
ity, scattered as they are in unexpected 
contexts, have been appropriated by oth- 
ers with little acknowledgement, and 
have proved decisive in making more 
than one career in mathematics. For ex- 
ample, his paper with Lomnicki on the 
foundations of probability, which also 
dates back to his Polish period, con- 
tains a casual remark on the existence of 
prime ideals in Boolean algebras, later 
developed by Tarski and others in sev- 
eral formidable papers. 

The Borsuk-Ulam theorem was strik- 
ing enough to catch the attention of 
Solomon Lefschetz, the leading topol- 
ogist of the time and the chairman of 
the Princeton mathematics department. 
Through Lefschetz and von Neurnann, 
with whom he had started to corre- 
spond, Ulam was invited in 1936 to 
visit the Institute for Advanced Study 
in Princeton. 

For four years he commuted between 
Poland and America where, first in 
Princeton and later at the Harvard Soci- 
ety of Fellows, he lived in luxury on his 
parents' monthly checks. In the sum- 

mained emotionally crippled for the rest 
of their lives. 

Stan Ulam was one of them. Had he 
been able to remain in Poland and sur- 
vive the war, as Steinhaus, Kuratowski, 
and a few others did, he would have 
gone on to become one of the leading 
international figures of pure mathemat- 
ics, at least on a par with Banach. But 

mer of 1939, shortly after he returned to 
the United States with his brother from 
what would be the last visit to his fam- 
ily, World War 11 broke out. By acci- 
dent he had been saved from almost cer- 
tain extinction. He would never leave 
the United States again, except on short 
trips. 

T he belle 6poque, the period that 
runs between 1870 and the 1930s 
(though some claim that it ended 

with World War I), was one of the hap- 
piest times of our civilization. Vienna, 
Prague, L w ~ w ,  and Budapest were capi- 
tals of turn-of-the-century sophistication, 
though they lacked the staid traditions 
of Paris, Florence, or Aranjuez. Robert 
Musil, Gustav Mahler, Franz Kafka, 
Ludwig Wittgenstein, and the philoso- 
phers of the Vienna Circle have become 
for us symbols of mitteleuropaische KuZ- 
fur. Most of those now legendary fig- 
ures betrayed personality traits similar 
to Stan's: restlessness, intolerance, a 
dialectic of arrogance and contrition, 
and an unsatisfied need for affection, 
compounded by their society's failure to 
settle on a firm code for the expression 
of emotion. Perhaps the roots of the 
tragedy that befell central Europe should 
be looked for in those men's tragic lives 
and flawed personalities, rather than 
in the scurrilous outbursts of some de- 
mented housepainter. 

When the catastrophe came, those 
among them who were still alive to 
watch their world go up in flames never 
recovered from the shock. They re- 

after he bade farewell to his friends at 
the Scottish Cafe, something died for- 
ever within him, and his career as a 
pure mathematician went permanently 
adrift. 

Like other immigrants from the Eu- 
ropean leisure class, Stan arrived in the 
United States ill-equipped for the rigors 
of puritan society. 

The big open spaces of America, the 
demands for aloneness and self-reliance 
made him feel estranged. He wished 
to belong, and he loved this country, 
but he never came to feel fully at home 
in the United States, whether in Cam- 
bridge, Madison, or Los Alamos. He 
missed the lively street life of European 
cities, the culture, the rambling conver- 
sations (what the Spanish call terfulius) 
and viewed with alarm the decay of that 
art, which in our day has become all but 
extinct. 

By now the effective American way 
of scientific exchange has imposed it- 
self on the rest of the world. But fifty 
years ago life in American universi- 
ties was incomparably duller than the 
cafe-science of Lw6w. The atmosphere 
of Cambridge in the thirties was too 
cold, and, what was worse, there were 
no cafes. And then, in Europe, the war 
started. 

In the fall of 1939, Stan would spend 
endless hours watching the Charles 
River from his room at Harvard, stu- 
pefied by the sudden turn of events 
that had changed his life and that of so 
many others. He learned of the fall of 
Poland, of the deportation of his family 
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to a concentration camp (his sister and 
uncles were killed in gas chambers), of 
the sacking of the great Ulam bank. 

He was all alone now. His father's 
monthly checks had stopped, his Junior 
Fellowship would soon run out, and he 
would have to support his brother's col- 
lege education at Brown. He pinned 
great hopes on his big paper on er- 
godic theory, which he had just finished 
writing with Oxtoby and which had 
been accepted for publication in Annals 
of Mathematics, the most prestigious 
mathematics journal. In the solitude of 
Adams House, he could not bring him- 
self to finish a paper by himself, though 
his lectures on the theory of functions 
of several real variables were the most 
brilliant he ever delivered (some former 
students still cherish the notes they took 
of that course). 

G .  D. Birkhoff, the ranking Harvard 
mathematician and the absolute monarch 
of American mathematics, took a lik- 
ing to Stan Ulam. Like other persons 
rumored to be anti-Semitic, he would 
occasionally feel the urge to shower 
his protective instincts on some good- 
looking young Jew. Ulam's sparkling 
manners were diametrically opposite 
to Birkhoff's hard-working, aggres- 
sive, touchy personality. Birkhoff tried 
to keep Ulam at Harvard, but his col- 
leagues balked at the idea. After all, 
Ulam had only one long paper in course 
of publication, and it can be surmised 
that the Harvard mathematicians of the 
thirties turned up their noses at the ab- 
stract lucubrations of a student of Ba- 
nach. 

Birkhoff then began to write letters to 
his fiiends at several universities, sug- 
gesting Ulam's name for appointment. 
It didn't take long before Stan received 
an offer from the University of Wiscon- 
sin in Madison, an assistant professor- 
ship carrying a rather high stipend for 
the time, over two thousand dollars. He 
had no choice but to accept it. 

For the first time in his life, Stan had 

to do "an honest day's work," and he 
didn't like the thought. The teaching 
load of some twelve hours a week of 
pre-calculus soon turned into a torture. 
Rumor had it that he had occasionally 
fallen asleep while lecturing. Madi- 
son, a friendly little Midwestern town, 
was the end of the world for a worldly 
young European. The ambiance was 
more non-existent than dismal. His 
colleagues, upright men and world- 
renowned mathematicians like Everett 
and Kleene, were not the garrulous 
Slavic types he was used to. Then af- 
ter Stan's second year at Wisconsin, 
America entered the war. 

Once more John von Neumann came 
to Stan's rescue. 

f all escapes from reality, math- 
ematics is the most success- 
ful ever. It is a fantasy that 

becomes all the more addictive be- 
cause it works back to improve the 
same reality we are trying to evade. 
All other escapes-love, drugs, hob- 
bies, whatever-are ephemeral by com- 
parison. The mathematician's feeling 
of triumph, as he forces the world to 
obey the laws his imagination has freely 
created, feeds on its own success. The 
world is permanently changed by the 
workings of his mind, and the certainty 
that his creations will endure renews 
his confidence as no other pursuit. The 
mathematician becomes totally com- 
mitted, a monster like Nabokov's chess 
player, who eventually sees all life as 
subordinate to the game of chess. 

Many of us remember the feeling 
of ecstasy we experienced when we 

first read von Neumann's series of pa- 
pers on rings of operators in Hilbert 
space. It is a paradise from which no 
one will ever dislodge us (as Hilbert 
said of Cantor's set theory). But von 
Neumann's achievements went far be- 
yond the reaches of pure mathematics. 
Together with Ulam he was the first to 
have a vision of the boundless possi- 
bilities of computing, and he had the 
resolve to gather the considerable intel- 
lectual and engineering resources that 
led to the construction of the first com- 
puter. No other mathematician of this 
century has had as deep and lasting an 
influence on the course of civilization. 

Von Neumann was a lonely man with 
deep personal problems. He had two 
difficult marriages. He had trouble re- 
lating to others except on a strictly im- 
personal level. Whoever spoke to him 
noticed a certain aloofness, a distance 
that would never be bridged. He was 
always formally dressed in impeccable 
business suits, and he always kept his 
jacket on (even on horseback), as if to 
shield himself from the world. 

Stan was probably the only close 
friend von Neumann ever had. A simi- 
lar background and a common culture 
shock brought them together. They 
would spend hours on end gossiping 
and giggling, swapping Jewish jokes, 
and drifting in and out of mathematical 
talk. 

Stan was the more original mathe- 
matician of the two, though he accom- 
plished far less in mathematics than von 
Neumann did. Von Neumann had an in- 
comparably stronger technique. From 
their free play of ideas came some of 
the great advances in applied mathe- 
matics of our day: the Monte Car10 
method, mathematical experiments on 
the computer, cellular automata, simu- 
lated growth patterns. 

Like everyone who works with ab- 
stractions, von Neumann needed con- 
stant reassurance against deep-seated 
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and recurring self-doubts. Following 
his uncanny instinct for doing the right 
thing at the right time, Stan soon found 
the way to cheer up his brooding friend. 
He began to make f in  of von Neu- 
mann's accomplishments. He would 
mercilessly ridicule continuous geome- 
tries, Hilbert space, and rings of opera- 
tors, cleverly picking on weaknesses in 
von Neumann's work that were obvious 
and expected. Stan's jibes were an indi- 
rect but firm expression of admiration. 
Rather than feel offended, von Neumann 
would burst out in a laughter of relief. 

Much later, when Stan related to me 
these events, he affected to regret never 
having said a kind word to von Neu- 
mann about his work in pure mathemat- 
ics. But I could feel he was not serious. 
Deep inside he knew he had been good 
to his friend. 

Stan didn't fully realize how much 
von Neumann meant to him until his 
friend began to die of cancer, in 1955. 
Stan would make frequent trips to Wal- 
ter Reed Hospital in Washington, where 
for months on end his honored friend 
was confined to a bed in the Presidential 
Suite. Stan came prepared with a bag- 
ful of the latest jokes and prurient Los 
Alamos gossip. The little hospital bed 
would shake with the vibrations of von 
Neumann's big belly as he laughed him- 
self to tears, the very tears that Stan was 
fighting to control. Then weeks passed 
when von Neumann could no longer 
recognize anyone. When he finally died, 
Stan broke into tears. It was probably 
the only time in his life when he openly 
lost control of his emotions. 

B ack in 1941 shortly after the 
United States entered the war, 
Stan (then still at Wisconsin) 

began to notice that von Neumann's let- 
ters were becoming infrequent. Curious 
about his friend's mysterious unavaili- 
bility, Stan managed one day to cor- 
ner him in Chicago. He implored von 

Neumann to drag him out of his Wis- 
consin rut and to get him a job related 
to the war effort. The request fit per- 
fectly with von Neumann's plans. He 
had already made up his mind to bring 
Stan with him to the newly founded Los 
Alamos laboratory, where the atomic 
bomb project was being launched. 

The choice of a set theorist for work 
in applied physics might seem eccen- 
tric, but in retrospect von Neumann 
made the right choice. Besides, as the 
token mathematician in a sea of physi- 
cists (though he was probably one of the 
finest minds among them, together with 
Fermi and Feynman), von Neumann was 
relieved to have his cohort join him. 

The assembly of geniuses who roamed 
the corridors of the Los Alamos labora- 
tory during World War I1 has not been 
matched in recorded history, with the 
possible exception of ancient Greece. In 
the hothouse of the Manhattan Project, 
Stan's mind opened up as it hadn't since 
the days of the Scottish Caf6. The joint 
efforts of the best scientists of the time, 
their talents stimulated and strained by 
the challenge of a difficult project, made 
what could have been a drab weapons 
laboratory into a cradle of new ideas. 
In welcome breaks between long stints 
at the bench, in a corner at some loud 
drinking party, the postwar revolutions 
in science were being hatched. 

Los Alamos was a turning point in 
Stan Ulam's career. From that time on 
physics, not mathematics, became the 
center of his interest. After watching 
Femi and Feynman at the blackboard, 
he discovered that he too had a knack 
for accurately estimating physical quan- 
tities by doing simple calculations with 
orders of magnitude. In fact, he turned 

out to be better at that game than just 
about anvone around him. 

an ability is in a mathematician. The 
literalness of mathematics is as far re- 
moved from the practical needs of the 
physicist as might be the story of the 
Wizard of Oz. As Stan began to dis- 
play his newly found talent, he came 
to rely less and less on standard math- 
ematical techniques and to view ordi- 
nary mathematics with some contempt. 
He admired Fenni's genius for solving 
physical problems with no more than 
the minimum amount of math. Since 
that time Fermi remained for him the 
ideal of a scientist. In his old age he 
liked to repeat (perhaps with a touch of 
exaggeration) that Fermi had been the 
last physicist. 

But the Magic Mountain lasted only 
as long as the war. In 1945 it seemed 
that the Los Alamos laboratory might 
close down, like many other wartime 
projects, and Stan began to look for a 
job elsewhere. Unfortunately, his list of 
publications was hardly longer now than 
it had been in 1939, and unpublished 
work gets no credit. To his chagrin he 
was ignored by the major universities. 
He finally had to accept the offer of a 
professorship at the University of South- 
ern California, at the time a second-rate 
institution but one with great plans for 
the future. 

Suddenly he found himself in the 
middle of an asphalt jungle, teaching 
calculus to morons. The memories of 
his friends in Los Alamos, of the end- 
less discussions, of the all-night poker 
games, haunted him as he commuted 
daily among the tawdry streets of Los 
Angeles. The golden boy had lost the 
company of great minds, his audience 
of admirers. Like anguish that could no 
longer be contained, encephalitis struck. 

We still tend to regard disease as a 
mere physical occurrence, as an unfore- 
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seen impairment of the body that also, 
mysteriously, affects the mind. But this 
is an oversimplification. After a man's 
death, at the time of the final reckoning, 
an event that might once have appeared 
accidental is viewed as inevitable. Stan 
Ulam's attack of encephalitis was the 
culmination of his despair. 

After recovering from his operation, 
Stan resigned his position in a hurry and 
went back to Los Alamos. 

T he year was 1946, and the Los 
Alamos laboratory was now a dif- 
ferent place. Gone were most of 

the luminaries (though many of them 
would make cameo appearances as con- 
sultants), and the federal govemment 
was lavishing limitless funds on the lab- 
oratory. For a few years Los Alamos 
scientists found themselves coddled, se- 
cure and able to do or not do whatever 
they pleased, free to roam around the 
world in red-carpeted MATS flights (that 
is, until Americans decided to give up 
the Empire they had won). 

Ulam came back to Los Alamos 
haunted by the fear that his illness might 
have irreparably damaged his brain. He 
knew his way of thinking had never 
been that of an ordinary mathemati- 
cian, and now less than ever. He also 
feared that whatever was left of his tal- 
ents might quickly fade. He decided the 
time had come to engage in some sub- 
stantial project that would be a fair test 
of his abilities, and one with which his 
name might perhaps remain associated. 

While at Wisconsin, Stan had met Ev- 
erett. They had jointly written the first 
paper on the subject that is now called 
algebraic logic (a beautiful paper that 
has been plundered without acknowl- 
edgement). Everett, a seclusive and tac- 
iturn man, was richly endowed with the 
ability to compute. He was a good lis- 
tener, and he suffered from a paranoid 
fear of being fired for wasting Lab time 
on research in pure mathematics. He 

was a perfect complement to Stan. Af- 
ter he had accepted Stan's invitation to 
come to Los Alamos, they joined forces 
on a long and successful collaboration. 

As their first project they chose the 
theory of branching processes. They 
believed they were the first to discover 
the probabilistic interpretation of func- 
tional composition. (They had ignored 
all previous work, all the way back to 
Galton and Watson in the nineteenth 
century! Stan never had the patience to 
leaf through published research papers. 
He hated to learn from others what he 
thought he could invent by himself and 
often did). They rediscovered all that 
had been already done, and added at 
least as much of their own. Their re- 
sults were drafted by Everett in three 
lengthy lab reports, which found sub- 
stantial applications in the theory of 
neutron diffusion, an essential step in 
the understanding of nuclear reactions. 
These reports were never published, 
but they nevertheless had a decisive in- 
fluence on the development of what is 
still a thriving branch of probability the- 
ory. The authors have received little 
acknowledgement for their work, per- 
haps as a spiteful punishment for their 
own neglect of the work of others. 

Their second project was the hydro- 
gen bomb. 

s tan Ulam and Edward Teller had 
disliked each other from the mo- 
ment they had met. Since the 

days of the Manhattan Project, Teller 
had been somewhat of a loner. His be- 

havior put him outside the main-line 
Bethe-Fenni-Oppenheimer group, and 
not even his fellow Hungarian von Neu- 
mann felt at ease with him. This despite 
the fact that he distinguished himself 
from the first days of Los Alamos as 
one of the most brilliant applied physi- 
cists there. 

Teller related with difficulty and dif- 
fidence to other scientists of his age. 
He felt more at ease either with young 
people or with celebrities, highly placed 
politicians, generals and admirals. His 
group (what eventually became the 
Lawrence Livermore Laboratory af- 
ter he left Los Alamos in a huff) was 
highly disciplined, rank-conscious, and 
loyal. He would sagely guide his stu- 
dents and assistants to doing the best 
research work they were capable of, 
and he would reward his followers with 
top-rank positions in academic adminis- 
tration or in government. 

Since the success of the first bomb, 
Teller had been obsessed by the idea 
of the "Super." Because of disagree- 
ments between him and Oppenheimer, 
his project had more than once been on 
the verge of being cancelled. Now, Stan 
Ulam was out to get him by proving 
that his plans for the new bomb would 
not work. 

For about two years Everett and Ulam 
worked frantically in competition with 
Tellery s group. They met every mom- 
ing for several hours in a little office 
out of the way. Ulam would generate 
an endless stream of ideas and guesses, 
and Everett would check each one of 
them with feverish computations. In 
a few months' time Everett wore out 
several slide rules. At last they proved 
Teller wrong. And then, adding insult 
to injury, Stan, in a sudden flash of in- 
spiration, came upon a trick to make the 
first hydrogen weapon work. 

The full extent of Stan's contribution 
to the design of the first hydrogen bomb 
will never be precisely established. It is 
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certain, however, that he was instrumen- 
tal in demolishing misguided proposals 
that would have resulted in consider- 
able waste of time and funds. It is all 
but certain that the seed idea that finally 
worked was his own. At any rate, the 
ensuing loud dispute with Teller over 
the priority of the invention brought him 
wide publicity. (The patent application 
for the device was jointly submitted by 
Teller and Ulam.) The Democrats soon 
saw their advantage in adopting Ulam as 
a bulwark against the Republicans, who 
had Teller on their side. He was invited 
to sit in on important Washington com- 
mittees and later became a darling of 
the Kennedy era. 

At last some of the glitter of his Pol- 
ish youth had come back, if not in the 
form of tangible wealth, at least in the 
guise of public recognition. 

T he late forties and fifiies were the 
high point of Stan Ulam's life. 
His personality thrived. His con- 

versation, always lively, became all the 
more witty and engaging. The better 
part of his day was spent telling jokes 
and funny stories and inventing one 
interesting mathematical idea after an- 
other, like a wheel of fortune that never 
stopped. The joke was the literary form 
he most appreciated. He would come 
up with anecdotes, ideas, and stories on 
any subject of his acquaintance, how- 
ever little his competence. He so liked 
to dominate a conversation that some 
of his colleagues began to take pains to 
avoid him. Now he had to win every 
argument. When he felt he was on the 
losing side, he would abruptly change 
the subject, but not before seeing the 
bottom of the other person's position 
and summarizing it with irritating accu- 
racy. Considering how fast it all hap- 
pened, it is remarkable how seldom he 
misunderstood. Mathematicians felt put 
down, and Ulam's ways alienated him 
from the guild. He retaliated by claim- 

ing not to be a "professional" mathe- 
matician and by going into rambling 
tirades against the myopia of much con- 
temporary mathematics. 

The free rein Ulam gave to his fan- 
tasy fed on one of his latent weaknesses- 
his wishful thinking. He became an 
artist at self-deception. He would go 
to great lengths to avoid facing the un- 
pleasant realities of daily life. When 
anyone close to him became ill, he 
would seize on every straw to pretend 
that nothing was really wrong. When 
absolutely forced to face an unpleasant 
fact, he would drop into a chair and fall 
into a silent and wide-eyed panic. 

His severest critics were those close 
to him who felt excluded from his pri- 
vate world, who stood outside the mighty 
fortress of mathematics. His daugh- 
ter would browbeat him and cut him 
to pieces at regular intervals, incredu- 
lous of her father's achievements. He 
took her criticisms in silence, and was 
fond of quoting one of James Thurber's 
lovely generalizations: "Generals are 
afraid of their daughters.'' 

Despite the comfort of the Los Alamos 
Laboratory (in the fifties and sixties 
Ulam was one of two research advisors 
to the Director of the laboratory), Stan 
could find no peace there. Since his re- 
t m  in 1946, he had, unbelievable as it 
may sound, lived out of a suitcase. He 
owned beautiful homes in Los Alamos 
and Boulder, but he thought of himself 
as permanently on the road. (Signifi- 
cantly, his ashes are now in Montpar- 
nasse Cemetery in Paris.) The Scottish 
Cafe was gone forever, and he was a 

passenger on an imaginary ship, who 
survived on momentary thrills designed 
to get him through the day. He sur- 
rounded himself with traveling com- 
panions who were fun to be with and 
to talk to. He went to great lengths to 
avoid being alone. When he was, only 
the lure of mathematics could draw his 
mind away from the clamor of his mem- 
ories. 

I will always treasure the image of 
Stan Ulam sitting in his study in Santa 
Fe early in the morning, rapt in thought, 
scribbling formulas in drafts that would 
probably fill a couple of postage stamps. 

T he traits of Stan Ulam's person- 
ality that became dominant in his 
later years were laziness, gen- 

erosity, considerateness, and most of all, 
depth of thought. 

Those who knew Stan and did not 
know what to make of him covered up 
the mixture of envy and resentment they 
felt toward him by pronouncing him 
lazy. He was in fact lazy, in the dictio- 
nary sense of the word. In the thirties 
he would take a taxi to Harvard from 
his apartment in Boston to avoid tack- 
ling the petty decisions that a ride on 
the subway required. In Los Alamos 
there is a spot on a pathway up the 
Jkmez Mountains that is called Ulam's 
Landing. It is as far as Stan ever went 
on a hike before turning back. More 
often, he would watch the hikers with 
binoculars from the porch of his house, 
while sipping gin and tonics and taking 
to his friends. 

Like all words denoting human condi- 
tions, laziness, taken by itself, is neutral. 
It is a catchall that conceals a tension 
of opposites. Fata ducunt, non trahunt. 
Ulam turned his laziness into elegance 
in mathematics and into grand seigneur 
behavior in his life. He had to give all 
of his thinking an epigrammatic twist 
of elegant definitiveness. His failing 
became an imperious demand to get to 
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the heart of things with a minimum of 
jargon. 

He had a number of abrupt conversa- 
tion stoppers that he used to get rid of 
bores. One of them was a question de- 
signed to stop some long tirade: "What 
is this compared to E = me2?" When I 
first heard it (undoubtedly it was being 
used to stop me), I thought it a sign of 
conceit. But I was wrong. He would 
wake up in the middle of the night and 
compare his own work, too, to E = me2, 
and he developed ulcers from these 
worries. In truth, his apparent conceit 
was a way of concealing from others, 
and most of all from himself, the ag- 
ing of his brain. On rare occasions he 
felt overwhelmed by guilt at his inabil- 
ity to concentrate, which he viewed as 
avoidance of "serious" work. He looked 
at me, his intense blue-green eyes pop- 
ping and slightly twitching (they were 
the eyes of a prophet, like Madame 
Blavatsky's), his mask about to come 
down, and asked, "Isn't it true that I 
am a charlatan?" I proceeded to set his 
mind to rest by giving him, as a seda- 
tive, varied examples of flaming charla- 
tans taken from scientists we both knew 
(both with and without Nobel Prizes). 
But soon his gnawing doubts would 
start all over again. He knew he would 
remain to the end a Yehudi Menuhin 
who never practiced. 

His generosity was curiously linked 
to his laziness. A generous action is 
often impulsive and calls for little fore- 
sight. Its opposite requires the careful 
advance planning that Stan loathed. 
He fancied himself a grand seigneur 
of bottomless means, and in matters 
of money he was apt to practice the 
art of self-deception. In his penurious 
years he went to great lengths to con- 
ceal his shaky financial condition. He 
always lived as the spirit moved him, 
sometimes beyond his means. He car- 
ried on his person bundles of fifty and 
one-hundred dollar bills, partly from a 
remnant of the refugee mentality, partly 

to impress whomever he met during his 
travels. 

He was also too much of a grand 
seigneur to insist on his priority for the 
many new ideas he contributed to sci- 
ence. His nonchalance as to the fate and 
success of his work has unjustly low- 
ered his standing as a scientist. When 
he saw one of his ideas circulating with- 
out credit, he remarked, "Why should 
they remember me? No one quotes 
Newton or Einstein in the bibliographies 
of their papers." 

His way of expressing himself lent 
itself to his being exploited. He would 
speak in sibylline pronouncements that 
seemed to make little sense. Those of 
his listeners who decided to pursue his 
proposals (and often ended up writing 
dozens of research papers on them) felt 
they had spent enough of an effort in 
figuring out what Stan really meant 
to reward themselves by claiming full 
credit. 

A seed idea is the last thing we want 
to acknowledge, all the more so when 
it originates from a native intelligence 
seemingly blessed with inexhaustible 
luck. After we silently appropriate it, 
we will soon enough figure out a way to 
obliterate all memory of its source. In a 
last-ditch effort to salvage our pride, we 
will also manage to find fault with the 
person to whom we are indebted. Stan 
Ulam's weaknesses were all too appar- 
ent and made him more vulnerable than 
most. But the strength of his thinking 
more than made up for what he lost to 
the pettiness of others. 

Stan once showed me in five min- 
utes the central idea of the theory of 

continued fractions and thereby saved 
me much work. Once I bragged to him 
about some computations I had done on 
the speed of convergence in the central 
limit theorem, and he showed me how 
to derive the same result by an elegant 
argument with ordinary square roots. 

Stan did his best work in fields where 
no one dared to tread, where he would 
be sure of having the first shot, free 
from all fear of having been anticipated. 
He used to brag about being lucky. But 
the source of his luck was his boundless 
intellectual courage, which let him see 
an interesting possibility where everyone 
else could see only a blur. 

He refused to write down some of 
his best ideas. He thought he would 
find some day the time and the help he 
needed to work them out. But he was 
misjudging the time he had left. His 
best problems will survive only if his 
students ever write them down. 

Two of them have struck me. In 
the nineteenth century mathematicians 
could not conceive of a surface unless 
it was defined by specific equations. 
After a tortuous period of abstraction, 
the point-set topologists in this cen- 
tury arrived at the abstract notion of a 
topological space, which renders in pre- 
cise terms our intuitive grasp of the no- 
tion of extension. Ulam proposed going 
through a similar process of refinement 
on Maxwell's equations to arrive at an 
abstract structure for electromagnetic 
theory free of algebraic irrelevancies. 

The second problem bore on ergodic 
dynamical systems. Poincark, and sev- 
eral others after him, taught us that in 
such a system every state is visited in- 
finitely often, given a sufficiently long 
time. In practice, however, the recur- 
rence times are so large that one cannot 
observe successive visits, and the prac- 
tical import of ergodicity is nil. This 
paradox became strikingly evident after 
the Ferrni-Pasta-Ulam computer sim- 
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ulations of coupled nonlinear oscilla- 
tors. (These were written up in one 
of Fermi's last papers. It is rumored 
that Fermi considered this to have been 
his most important discovery.) In these 
nonlinear systems the initial state is vis- 
ited several times before another set of 
available states is even approached. Af- 
ter observing this phenomenon, Ulam 
guessed that in some ergodic systems 
the phase space ought to be measure- 
theoretically represented by two or more 
big blobs connected by thin tubes. He 
wanted to express his guess in terms of 
ergodic theory. I wish we knew how. 

Stan's fascination with physics led 
him to formulate mathematical thoughts 
that had a background of physics, but 
they invariably bore the unmistakable 
ring of mathematics. (He once started to 
draft a long paper that was to be titled 
"Physics for Mathematicians.") One of 
the most striking is his proposal for the 
reconstruction of the cgs system (dis- 
tance, mass, and time) on the basis of 
a random walk. Another, which Dan 
Mauldin has recently proved true, is the 
existence of a limiting energy distri- 
bution for systems in which energy is 
redistributed through particle collisions. 

Stan Ulam's best work is a game 
played in the farthest reaches of ab- 
straction, where the cares of the world 
cannot intrude: in set theory, in measure 
theory, and in the foundations of math- 
ematics. He used to refer to his volume 
of collected papers as a slim volume of 
poems. It is just that. 

As a mathematician, his name is most 
likely to survive for his two problem 
books, which will remain bedside books 
for young mathematicians eager to make 
their mark by solving at least one of 
them. He also wanted to be remem- 
bered for those of his insights that found 
substantial practical applications, such 
as the Monte Carlo method, for which 
he will share the credit with Metropolis 
and von Neumann, and the bomb, for 

which he will be remembered alongside 
Teller. 

Only in the last years of his life did 
his thinking take a decisively specula- 
tive turn. He always professed to dis- 
like philosophical discussions, and he 
excoriated ponderous treatises in phi- 
losophy. He thought them in bad taste, 
"Germanic" (one of his words of repro- 
bation). Nonetheless, he had an instinc- 
tive grasp of philosophical issues, which 
he refused to express in words. When 
forced to take a philosophical stand, he 
would claim to agree with the naive sci- 
entisrn of H. G. Wells and with the pos- 
itivism of the Vienna Circle (the reign- 
ing philosophy of his time), but in his 
actual thinking he was closer to the phe- 
nomenology of Husserl and Heidegger. 
His knowledge of philosophy suffered 
from his habit of scanning without read- 
ing. He seldom read a book from top to 
bottom; more often he would handle it 
long enough to pick out the main point, 
sometimes after correcting a few mis- 
prints, and then literally toss it away. 
I once set up a little test of his under- 
standing of existentialism, by way of 
teasing him. I gave him a collection of 
poems written by Trakl, the first exis- 
tential poet in German. Stan read them 
all and was visibly moved. I will al- 
ways regret not being able to hold his 
attention long enough for him to get the 
basic idea of Husserl's phenomenology. 
He would have liked it. 

Those of us who were close to him 
at the end of his life (Bednarek, Beyer, 
Everett, Mauldin, Metropolis, Myciel- 
ski, Stein, and I, to name a few) were 

drawn to him by a fascination that went 
beyond the glitter of new ideas of ar- 
resting beauty, beyond the trenchant 
remarks that laid bare the hidden weak- 
ness of some well-known theory, be- 
yond the endless repertoire of amus- 
ing anecdotes. The fascination of Stan 
Ulam's personality rested in his supreme 
self-confidence. His self-confidence 
was not the complacency of success. 
It rested on the realization that the out- 
come of all undertakings, no matter how 
exalted, will be ultimate failure. From 
this unshakeable conviction he drew his 
strength. 

This conviction of his, of course, was 
kept silent. What we heard from him 
instead were rambling tirades against 
mathematicians and scientists who took 
themselves too seriously. He would tear 
to shreds some of the physics that goes 
on today, which is nothing but poor 
man's mathematics, poorly learned and 
poorly dressed up in a phoney physical 
language. But his faith in a few men 
whom he considered great remained 
unshaken: Einstein, Fermi, Brouwer, 
President Truman. 

Thinking back and recalling the ideas, 
insights, analogies, nuances of style that 
I drew from my association with him 
for twenty-one years, I am at a loss to 
tell where Ulam ends and where I really 
begin. Perhaps this is one way he chose 
to survive. 

He could not bear to see unhappiness 
among his friends, and he went to any 
lengths to cheer us up when we were 
down. One day, we were driving to- 
wards the Jkmez Mountains, along the 
stretch of straight road that starts right 
after the last site of the laboratory. I felt 
depressed, and drove silently, looking 
straight ahead. I could feel his almost 
physical discomfort at my unhappiness. 
He tried telling some funny stories, but 
they didn't work. After a minute of si- 
lence, he deployed another tactic. He 
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knew I had been interested in finding 
out just how much physics he really 
knew, and that I had unsuccessfully 
tried to quiz him. Now he launched on 
a description of the Planck distribution 
(which he knew I didn't know) and its 
role in statistical mechanics. I turned 
around, surprised at the thoroughness 
of his knowledge, and he smiled. But 
a few minutes later he again fell silent, 
and the gloom started all over. After a 
pause that was undoubtedly longer than 
he could bear, he blurted out: "You are 
not the best mathematician I have ever 
met, because von Neumann was a better 
one. You are not the best Italian I have 
ever met, because Fermi was a better 
one. But you are the best psychologist 
I have ever met." This time I smiled. 
It was his way of acknowledging our 
friendship. He knew that I could see 
through his weaknesses, through his 
laziness, through his inability to do any 
prolonged stint of work. He knew that 
I discounted those weaknesses, and that 
I saw, beyond them, the best of his per- 
son. That he appreciated. 

N o other period of civilization has 
been so dependent on hypocrisy 
for survival as the belle ipoque, 

the Victorian Age. It has bequeathed 
us a heritage of lies that we are now 
charged with erasing, like a huge na- 
tional debt: the image of the hero as 
the fair-haired boy, and the sharp parti- 
tion of all people into "good guys" and 
"bad guys." These false illusions must 
now make way for biographies in which 
ambiguity, duplicity, and the tension of 
opposites are seen as the fundamental 
forces that drive every person. 

The prejudice that the scientist, as 
a seeker of the truth, is immune from 
the passions of the world and is capable 
of doing no wrong, a prejudice prop- 
agated for over a century by bigoted 
biographers, has done harm. One shud- 
ders to guess how many talented young 

minds have been discouraged from a 
career in science by reading such un- 
realistic portrayals of the scientist as a 
saint. Moreover the presumption that 
"good" behavior (as interpreted by the 
biographer) is a prerequisite for success 
in science betrays a lack of faith in sci- 
ence. Lastly, one should tell the truth, 
even when such a truth belies our ideas 
of how things ought to be. 

Stan Ularn was lazy, he talked too 
much, he was hopelessly self-centered 
(though not egotistical), he had an over- 
powering personality. But he bequeathed 
us a view that bears the imprint of depth 
and elegance, one that enriches our lives 
and will enrich the lives of those who 
come after us. For this he will always 
be remembered. 

Gian-Carlo Rota is a Professor of Applied 
Mathematics and Philosophy at the Massachusetts 
Institute of Technology. He has served as a 
consultant to the Laboratory for over twenty 
years. 
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From Above 
the Fray 

M any people thought of Stan as 
lazy. In one way of speaking 
they were right: he never was 

observed cutting the lawn or washing 
dishes, and he engaged only extremely 
rarely in the tedious, straightforward- 
albeit demanding-business of actually 
carrying through long and complicated 
and step-wise dependent numerical cal- 
culations. 

But in a more important way of 
speaking they were wrong. He was 
never asleep. He was constantly alert 
to the strange ways in which people 
applied and immersed themselves in 
immediate and detailed problems. He 
did not consider such efforts to be un- 
deserving of credit-indeed he recog- 
nized them as essential to any practical 
outcome-but for the most part they 
were outside the range of his direct in- 
terest and personal style. He thought, 
and thought constantly, in a qualitative 
and unconstrained way. In this fash- 
ion he made a number of exceedingly 

how valuable the MO* ~ a r t e  Method 
would be when electronic conapaters 
should make extensive applications of 
the method feasible. Even before that 
time, in connection with a particular 
aspect of the Super Program that was 
essentially impregnable against analytic 
efforts, he and C. J. Everett applied the 
method, by hand, in a highly schematic 
but still enormously time-demanding 
manner. Stan was not fired by any de- 
sire that the hydrogen bomb should 
add a new dimension to the already 
intolerable capabilities of the atomic 
bomb-indeed he hoped that it might be 
possible to show that a thermonuclear 
weapon was impractical. And actually 
his and Everett's work strongly indi- 
cated impracticality for the particular 
pattern envisaged at that time (1950). 
In the meantime, others had prepared a 
much more elaborate treatment of the 

could be carried out only on the most 
capable computing machines then avail- 
able. This was, of course, done, and 
Stan followed the results with interest- 
but again, the conduct of this work was 
not his style. He turned his own per- 
sonal attention to more long-st&ding 
questions having to do, for example. 
with random processes, nuclear pWu^ 
sim, mathematical models for biological 
processes, patterns of growth, and so on. 

At the time he retired from the staff 
of Los Alamos (1967), and to a very 
large extent since then, the weapons- 
related activities of the Laboratory were 
directed mainly to realizing modifica- 
tions, improvements, or refinements 
of devices of the sort presaged in the 
Ulm-TfeUer proposal of 195 1. i 

Carson Mark first came to Los Alamos in May 
1945 as a Canadian collaborator on fte Manhat- 
tan Project. fa 1946 he became a aeaiber of 
the perniaaent staff of 6Ã latxaatoly that arose 
from the wartime project and was head of its 
Theoretical Division ftoni 1947 until r&ed 
in 1973. 

Los Atamos Science Special Issue 1987 











Mathematics 

of Stall's during the last ten years of his life. Mark Kac, another Polish mathematician 
from the Lw6w school, gave a clue to the source of this strong collaboration: "[Dan] is 
a first-rate mathematician and he has the Polish soul with regard to mathematics. . . . He 
was on his way to becoming an all-American linebacker on the famous Longhorn team, 
and he gave it up for mathematics!" Dan's love for mathematics and gift for teaching 

as he introduces the readers to the basic tools of measure and probability 
s how to apply these tools to the fashionable and challenging problems 

in nonlinear science. His tutorial on probability and measure is intended to fill some 
gaps in our mathematical background as it reminds us of the beauty and precision of 
the mathematicians* world. Of the three research problems that follow the tutorial, the 
first and third demonstrate how intuition gained from computer experiments leads to 
strict mathematical proofs. The second, "Geometry, Invariant Measures, and Dynamical 
Systems," is most closely tied to the physicists' approach to nonlinear systems. We 
know now that many deterministic nonlinear systems live on strange attractors, delicate 
fractal structures that describe a never-repeating orbit confined to a finite region of 
space. These systems exhibit what appears to be chaotic behavior. How would one 
describe the long-term behavior of such a system? Dan shows us how to define a 
probability measure on strange attractors that could be used to calculate the average 
properties of complex nonlinear systems. 

In the article that follows, Paul Stein takes us back a step in history to the computer 
studies done with Stan in the early sixties on iterations of nonlinear transformations. 
Their work, apart from leading to perhaps the first discovery of a strange attractor, also 
led to the 1973 paper by Metropolis, Stein, and Stein on the iteration of the famous one- 
dimensional logistic map. This paper was a source of inspiration for Feigenbaum's 1976 
breakthrough on the universal nature of the transition to chaos by "period doubling." 
Stein describes the earlier results on period doubling as well as some recent work with 
Mauldin on an alternate route to chaos that has been observed in chemical experiments. 

The last two authors in this section break off from the theme of experimental 
mathematics and nonlinear systems. Mycielski, a Polish mathematician well known 
in the field of logic and set theory, took this opportunity to introduce to the non- 
mathematician two of Ulam5s formidable contributions to pure mathematics; first his 
measurable cardinals, which allow one to talk about orders of infinity well beyond what 
anyone had dreamed of, and, second, his proof with Oxtoby of the existence of ergodic 
transformations, one important step toward proving the ergodic hypothesis, the most 
controversial assumption in the foundations of statistical mechanics. (The significance 
of ergodicity or the lack thereof is discussed again in the physics section of "The Ulam 
Legacy "). 

Ronald Graham from Bell Laboratories closes our foray into mathematics with a 
little introduction t theory. Graham focuses on a problem that illustrates Stan's 

quantifying exactly how alike (or different) mathematical 
is theme will recur in another form when Walter Goad 

takes up the question of "alikeness" of DNA sequences in the biology section of "The 
Ulam Legacy." 
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a memoir for 
Stan Ulam 

by David Hawkins 

ometime in early 1944 I passed the open door of a small office near my 
own: S. ULAM. He had arrived at Los Alamos only a few days before and 
seemed unoccupied. We introduced ourselves-he a young mathematician, I 
an even younger philosopher, one with mathematical leanings. My field of 

work was the philosophy of mathematics and science. I had listened in on the shop 
talk of the theoretical physicists at Berkeley and knew their style. They thought of 
me for managerial chores in the newly created Los Alarnos laboratory. So I came, 
as an administrative assistant to Robert Oppenheimer. Only later was I given the job 
of writing a wartime history. I was in fact the sole representative of my trade at Los 
Alarnos, and the label "philosopher" usually caught curious attention. But Stan ignored 
it. He had come as a new member of the Theoretical Division, although no one (he 
slyly suggested) knew quite why. I later guessed that he had indeed been invited for 
no particular reason other than the urging of John von Neumann. Stan's version was 
characteristic: "Physicists don't know what to do with mathematicians." 

It was the beginning of a long personal and family friendship. But here I shall 
restrict my recollections to associations of the thinner, more mathematical kind. We 
soon discovered one strong common interest, in the foundations and uses of probability 
theory. Some of Stan's work (Lomnicki and Ulam 1934) had preceded that of Kol- 
mogorov on the measure-theoretic formulation of probability. Mine had been on the 
conceptual foundations, battled over since the time of Bernoulli and Leibnitz and closer 
to the philosopy of physics. 
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0 ne day Stan threw a problem at me, as if to bring our academic discussions back 
to the concerns of a wartime laboratory. In the chain reaction that was to power 

the atomic bomb, some fraction of the neutrons liberated by a fission induce other 
fissions, which in turn liberate more neutrons that induce more fissions, and so on. 
Suppose the number of induced fissions per fission is a random variable that can take 
on the values i = 0,1,2, . . . with probability pi. (That is, po is the probability that 
the neutrons from a single fission induce no further fissions, p\ is the probability that 
they induce one further fission, and so on.) What then is the probability distribution 
of the number of fissions occurring in the nth "generation" of such a process started 
by a single fission? Although we didn't know it at the time, the same problem-stated 
differently-had been solved long before. One earlier version had been posed in terms 
of the proliferation of a family name through male descendants. Assume that each 
male Jones produces i male offspring with probability pi, i = 0, 1 ,2 ,  . . . (and that this 
probability does not vary from one generation to another). What then is the probability 
that a given Jones has k males in the nth generation of his descendants? 

I spent several evenings on the problem. By persistence rather than insight I 
found the very simple solution (Hawkins and Ulam 1944). A lot of algebraic solvent 
evaporated and left behind an unexpected little crystal of a formula, the sort of outcome 
that makes you ask why it hadn't been obvious all along. 

Let f (x) be the Laplace generating function of the sequence of probabilities 
{po,pl,p2,. . .}. (That is, let f (x) be the function to which the infinite series po + 
plx + p2x2 + - - - converges.) Then the probability that Jones has k grandsons (or k 
second-generation male descendants) is the coefficient of xk when f2 (x)  = f (Ax)) is 
expanded in powers of x. And in general the probability that Jones has k n th-generation 
male descendants is the coefficient of xk when fn (x) =f{fn - ( x ) )  is similarly expanded. 
Thus, to the biological process, that of reproduction, there corresponds an algebraic one, 
that of iteration, in which the argument of a function is replaced by the function itself. 
I'll mention other related results and further applications later, but this was the essence 
of our first venture into what was to develop into the theory of branching (we said 
"multiplicative") processes.* 

Stan was delighted with my solution, and I, the rank amateur, was flattered. He 
already knew quite a lot about the deceptively simple operation of iteratively substituting 
a function for its own argument, and I got a lesson or two. In the course of these 
discussions, we got on to such topics as space-filling curves, turbulence, and what have 
recently come to be called catastrophes, in which deterministic laws lead rigorously 
to results we can only describe as chaotic. A good many years later when we were 
reminiscing about all of this, I complained that we had almost been pioneers in such 
matters. Why hadn't we pursued them? Stan's reply: "It's because there are so many 
of them guys and so few of us!" 

*I should also mention a prior Los Alamos paper by S. Frankel, which may lie buried in the 1943 series 
of Los Alamos reports. Frankel had thought in terms of a continuous time parameter instead of discrete 
generations. That approach leads to a one- parameter family of generating functions embedding our fn(.x). 
The problem actually has an even earlier origin. It was discussed by Darwin's cousin Francis Galton in 
1889 and then by A. Lotka in 1939. Later, in 1945, Erwin Schrodinger addressed the problem, and I recall 
seeing the title of a relevant Russian paper (obviously declassified!) of about the same date. A section of 
Feller's classic text on probability theory (Feller 1968) is devoted to branching processes; a full develop- 
ment is that of T. E. Harris (Harris 1963). 
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A Biological Chain Reaction 
Lotka showed that the pro 

was described by the seq 
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I know very little in detail of the wide range of Stan's work and his repertoire. In 
this memoir I shall confine myself to matters we corresponded about or worked on 

jointly. I do this partly because some of these may not be otherwise known and partly 
because they affected my own mathematical avocation in a way that throws some light 
on the character of Stan Ulam, teacher. I never sat in on any of his courses, to be 
sure, though I sometimes heard him lecture. The teaching I shall speak of is that I 
occasionally received, over many years, one-to-one. In talking about all this I shall 
refer to some work of mine that shows the nature of the Ulam influence; it is minor 
work but still a mirror of our associations. And I enjoy bringing these pieces together 
for the first time. 

Stan was indeed a superb teacher, of a kind not very common. One part of 
his secret was a quite extraordinary talent for turning forbidding topics into attractive 
problems, attractive because they seemed promising, seemed to open up some larger 
area. Another part is a quality I am tempted to describe as meritorious laziness. Though 
Stan could, on occasion, himself engage in intense and concentrated work, as a teacher 
he would give you the challenge and then-let you do the work. I remember feeling a 
bit resentful. I did all the work on that first little paper, and he could have added more! 
But what he really added was to my confidence. For Stan no ego was invested. 

Later, when I was at the University of Colorado, Stan and I both did some further 
work on branching processes. He, with C. J. Everett, had generalized the whole 

scheme by including "particles" of different types (Everett and Ulam 1948). This 
generalization, in its physical applications, allowed offspring and progenitors to differ 
from each other, for example, in their spatial or dynamical, and hence also in their 
reproductive, characteristics. 

My own related work was inspired partly by a conversation we had about one of the 
great and vital mysteries of mathematics. The Greeks got on to it, long before Euclid, 
in the discovery that geometrical facts could be represented arithmetically, while those 
of arithmetic could be seen in the mirror of geometry. In our own day the pendulum has 
swung far toward the arithmetical, whether analytic or digital, side. Rather typically 
Stan took the "wrong" side, that of geometry. "Draw a curve," he said, "of a nice 
simple function. Now draw another curve parallel to it. The relation is very simple to 
see and understand, but algebraically it can be quite messy." How is it possible that 
relationships that are so complicated in one domain can be mapped into another where 
they appear so simple, or vice versa? 

The generating-function transformation I had used in that first problem of ours is 
an elegant elementary example; it belongs to a wider family with many applications in 
applied mathematics, including probability theory. We had extended its use a bit, and it 
was Stan's challenge to extend it further, as he did in the work with Everett. To me the 
challenge was to explore the relevance of this transformation to other operations of a 
stochastic nature. Long known of course is the fact that addition of independent random 
variables corresponds to multiplication of their generating functions. What could one 
say about other arithmetical operations-division, say, or the logarithm-when random 
variables take the place of simple numbers? 

Consider the following example. Physics students learn that the number of alpha 
particles emitted per unit time by a bit of uranium is a random variable (call it 
F) described by the Poisson distribution, whose Laplace generating function f ( x )  is 
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, - \ ( l  - x )  , where A is a decay constant characteristic of uranium. The time between 
emission of successive alpha particles is also a random variable (call it G); it is described 
by the exponential distribution, whose generating function g(x) is A fm e h x u d u  = 
A/(A - 1n.x). Now F and G are reciprocals of each other. What then is the relation 
between f and g , the generating functions of their probability distributions? The answer 
is that they satisfy the remarkably simple relation 

where f and denote the inverses of f and g: f ' ( x )  = (lnx + A)/A and 
; e A < l - l / ~ )  

One can show that this functional relation holds quite generally. Whatever the 
probability distribution may be for A per unit B, its generating function and that of the 
distribution for the reciprocal measure B per unit A will satisfy the above identity. (A 
mathematical nicety is that the inverses of such functions always exist.) Thus one can 
easily calculate means, variances, and higher moments of one distribution from those 
of the other. 

A related topic is the "random logarithm": Find the probability distribution, for 
example, of the time required for a chain reaction to produce a given population size. 
I was in fact looking for some old notes on these matters, which Stan had asked about, 
when I learned of his death. 

A fter the war I was absented from weaponeering-first from choice and then by the 
F.B.I. I became politically opposed to the arms race that supported it, but not to 

wartime friends. Over the following years Stan and I corresponded or talked about a 
good many different topics, and again it was he who got me thinking about some of 
these. As I write now, I realize they all concerned iterative processes, deterministic or 
stochastic or mixed, that seemed to lie beyond the range of "standard methods." So 
although it might seem a bit of a jump to go from chain reactions to prime numbers, both 
fitted that general category. There is an iterative definition of the prime numbers, the 
sieve of Eratosthenes. The process is completely deterministic, but the way the primes 
are scattered among the other numbers has a very chancy look that has stimulated 
generations-centuries-of investigation. 

First there came from Stan some rolls of print-out: very long lists of primes, of 
twin primes, of successive differences between them, and so forth. All these of course 
were computer-generated. Others may have computed even longer lists; Stan was one 
of the first to do so. But soon the pattern changed. The theory of primes is a high- 
order specialty for number theorists, and a happy hunting ground for amateurs like me. 
Stan was neither, or both. I think he may have been the first to think of the sieve of 
Eratosthenes as merely one among many sorts of iterative processes whose products 
lie beyond the range of standard methods. He thought of a good many other ways of 
generating number sequences that were more or less prime-like in their frequency and 
distribution. It was a flanking maneuver: If you can't solve the original problem, think 
of others that resemble it, and may be easier. Some of Stan's schemes seemed to me 
far-fetched, and I said so. His reply: "Yes, but I am the village idiot!" 

Indeed, I think that Stan often did not care whether he got to the essence of a 

SIEVE OF ERATOSTHENES 
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SOME RANDOM NUMBERS 

The random numbers below are a small frac- 
tion of the 10,000 generated in the early 1900s 
by L. H. C. Tippett, then a member of the Bio- 
metric Laboratory at University College, Lon- 
don. Tippett generated the numbers, which 
were used in statistical sampling procedures, 
by selectfng 40,000 single digits from census 
reports and combining them by fours. The 
coliection of numbers was originally handwrlt- 
ten; the excerpt here is reprinted, with per- 
mission, from a version published in 1959 
by Cambridge University Press (Random Sam- 
piing Numbers, Tracts for Computers, edited 
by E, S, Pearson, Number 15). 

particular problem. There are many things you can do with problems besides solving 
them. First you must define them, pose them. But then of course you can also refine 
them, depose them, or repose them, even dissolve them! A given problem may send 
you looking for analogies, and some of these may lead you astray, suggesting new and 
different problems, related or not to the original. Ends and means can get reversed. 
You had a goal, but the means you found didn't lead to it, so you found a new goal 
they did lead to. It's called play. Cyril Smith has argued persuasively, and with good 
historical evidence, that play, not utility, has long been the mother of invention (Smith 
1981). Utility has been only the nursemaid. Creative mathematicians play a lot; around 
any problem really interesting they develop a whole cluster of analogies, of playthings. 

One of Stan's playthings, his "lucky numbers," got considerable attention (Gar- 
diner, Lazarus, Metropolis, and Ulam 1956). These numbers, which are generated by 
a sieve quite like that for the primes, have no particular arithmetical properties; they 
are just lucky to survive the sieving. A number of us got involved in studying their 
long-run distribution, which turned out to very close to that of the primes (Hawkins 
and Briggs 1957). 

It is here I should mention an important one of Stan's contributions in the general 
grouping of nonstandard iterative processes. There was nothing lazy about his pursuit 
of a really good idea. "Pursuit" is probably the wrong word; it implies he already 
had the idea on the run. In the beginning it maybe was more like a roundup, a 
nudging together of possible example after possible example. I recall his ruminations 
about the Monte Carlo method in 1944, when already he was talking about it. More 
than fifty years ago there began to appear small compilations of random numbers. 
I remember the incredulity of a good physicist friend when I showed him such a 
listing. He knew Jahnke-Emde, of course, an old book of tables of almost every then- 
standard function. But random numbers? Statisticians were the wave of the future 
in those days. They alone used random numbers-for honest sampling procedures- 
even though nobody quite knew what "random" meant. But Stan foresaw that when 
high-speed computers should come along, they might well be used to imitate various 
deterministic or stochastic processes. Stan's phrase was "playing the game." The 
question was how to provide a computer with random numbers. I favored the built-in 
alpha counter, but that violated the sensibilities of mathematicians. There is indeed 
a grey area between chance and determinism, occupied by pseudo-random sequences. 
Even that early Stan was exploring it. 

I think the most original part of Stan's early thinking about such matters was 
the idea that you could transform the equations describing a completely deterministic 
process into a mathematical form that also describes a stochastic one, and then you could 
get approximate solutions by playing the game repeatedly on a high-speed computer. 
But Monte Carlo is not my topic, except again as it affects my picture of Stan Ulam, 
teacher. 

One of the topics we got on to later was a Monte Carlo approach to the theory 
of prime numbers. Pick a number at random from the neighborhood of some number 
N .  The probability of picking a prime there is about &, their approximate frequency. 
Why not reverse the process and produce a random sequence of numbers that mimic 
the primes? Try out each number N = 2,3,4,5,. . . against a game of chance for which 
the probability of "winning" is &, and select it for the sequence only if it wins. The 
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properties of such a sequence, or rather of many such sequences examined together, 
might throw light on some aspects of prime-number theory. The statistician Harald 
Cramer, it turned out, had already written about that. My own next bright idea was 
to turn the sieve of Eratosthenes itself into a Monte Carlo device. Drop out half the 
numbers beyond 2, namely those that "lose" a game of chance for which the probability 
of losing is i. Let N be the first survivor. Now drop out Ã of the numbers beyond N,  
those that lose another game of chance for which the probability of losing is 6. Keep 
repeating the process indefinitely, each time basing the sieving on the first survivor. 
One can play this game on a computer, which I did. But the theory of these "random 
primes" turned out to be not too difficult (Hawkins 1974), and it showed that the prime- 
number sequence could be regarded as one of an infinite family of sequences very much 
like it in their average properties. It supports some familiar conjectures about the primes 
and suggest others. The best result, I think, is that the famous and unproved Riemann 
hypothesis turns out to be true of "almost all" sequences generated by the random sieve. 
This hypothesis is a more recondite example of the kind of transformation I have talked 
about. It concerns the zeros of a certain function in the complex domain and, if true, 
implies a whole batch of propositions in number theory. Many of these can be proved 
independently, and none have been disproved. But some seem to be beyond the range 
of simple methods. That the Riemann hypothesis can be shown to be true of the random 
primes, and thus of almost all prime-like sequences, surely makes even more unlikely 
the possibility that the primes themselves should prove an exception. 

H ere, finally, I should mention another component of Stan's work, one that I can also 
trace back to early Los Alarnos days. It grew later to very substantial proportions. 

One beginning I recall was to discuss a stochastic branching process that requires 
the "mating" of two "particles" from one generation in order to produce "offspring" 
for the next: sexual reproduction. Here the branching goes in both time directions, 
backward genealogically and forward by descent. The theory of this branching is 
essentially nonlinear. "Sex," Stan said, "is quadratic!" I had indeed examined one 
kind of nonlinear stochastic process, a chain reaction in which depletion of fuel, or 
of nutrient in the case of bacterial reproduction, is a factor. This led to a stochastic 
version of the well-known logistic curve of growth, which at first rises exponentially 
and then tapers off to a zero or negative slope. My work had a certain mathematical 
interest because it showed that the statistical fluctuations in such a nonlinear process 
can also change its average character; they don't "average out." 

Such work as this might have stayed in abeyance except for Stan's development 
of other and much broader interests, namely in mathematical models of growth and 
reproduction. I remember approaching him with my own new-found interest in Claude 
Shannon's work on information theory and in the discovery of Watson and Crick. I 
wanted to define a measure of biological complexity, or organization, in information- 
theory terms, and we were immediately at loggerheads. He wanted to insist that very 
simple instructions could produce very complex patterns and I that such simplicity 
would nevertheless limit the variety of such patterns. Each of us was defending a 
different meaning of "complex." I already knew of his work (or play) with computer- 
generated growth patterns (Ulam 1962) but hadn't realized fully the range of ideas he 
was bent on exploring. Once more it was that flanking move. The genetic instruction 

"SEX," Stan said, "IS QUADRATIC" 

In this quote Stan was expressing a broad 
mathematical view of sex as a branching pro- 
cess in which some interaction, or "mating," 
between "male" and "female" members of a 
species is required for reproduction. An ex- 
ample is the deadly mating of male and female 
black widow spiders. 

It 

Latrodectus mactans 

Oddly enough, the animal kingdom includes 
some species, namely, a few of the tapeworms, 
that reproduce without any mating. 

The demography of a sexually reproducing 
species depends on (among other factors) a 
product of the male and female populations- 
hence the adjective"quadratic." For mathe- 
matical simplicity mating is often assumed to 
be random, as it is for the ornamental ginkgo, 
or maidenhair, tree. 

Ginkgo 
biloba 
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of biological growth and reproduction is a vast and still mostly uncharted domain for
investigation. But once more the “village idiot” could invent all kinds of very simple
processes bordering that domain. The idea of “growing” elaborate dendritic patterns,
“organisms,” by the endless repetition of a few simple “genetic” instructions, applied
in each cycle to the results of previous cycles, was another in the category of iterative
processes that lay beyond the range of standard methods. It later became the basis for
the famous “game of life’ ’—was Stan its first inventor? I don’t know. I connect this
work also with Stan’s important work on the nature of and approach to equilibrium
in even slightly nonlinear iterative processes. In the years following he became quite
deeply involved in more realistic problems of genetics, but I mostly lost touch.

One of these problems, now well known and used in molecular genetics, came from
Stan’s deep familiarity with measure theory. Suppose a deck of cards can be shuffled
only by several allowable operations. Knowing these and the end result of a shuffling,
find the smallest number of allowable operations that accomplishes the given result, and
call it the “distance” between the two orderings. Two decks of cards, or two nucleic acid
strands, might appear very different in an item-by-item comparison yet be by shuffling
history very close. Stan was a visiting professor at the University of Colorado’s medical
school when he worked on this, and I have a nice story from Theodore Puck. Stan got
so interested in the mathematics (now not an iterative process) that he seemed to be
ignoring the relevant biology. Reproached, he mended his ways. But he began his final
talk on the subject with an imperative: “Ask not what mathematics can do for biology;
ask rather what biology can do for mathematics!”

In the sixties and seventies I became more and more concerned with practical and
theoretical work relating to elementary-school education in mathematics and science,

to “school-doctoring.” Toward this new career of mine Stan was-tolerant. We enjoyed
good conversations but little time for shared work. It was only last year that I was
suddenly recalled to our earliest association, catching up on some work he had done
in population genetics and related matters. With characteristic initial disregard for
humdrum scholarship, he had reinvented and extended some of the existing theory,
developed first by R. A. Fisher and Sewall Wright.

I had known generally about this work but had missed one small paper, one in
which he and Jan Mycielski formulated the basic theory of stochastic pairing, the
branching process involved in sexual reproduction (Mycielski and Ulam 1969). Its
main focus was not, however, on the fluctuational aspect of the process but on the
average distribution and evolution of mutations within a species. The paper set forth
three measures of the “distance” between two individuals. I shall mention only one
of these, proposed by Mycielski. It is simply the sum, over the present generation
and all past generations, of symmetric differences in genealogy; that is, the number of
entries present in one family tree and absent from the other, plus the number present
in the other and absent from the one. Since sexual reproduction is already a stochastic
process, this measure is genetically crude (for example, it ignores sibling diversity).
But it is surely a plausible first (or if you wish, zeroth) approximation—a measure of
purely genealogical, not yet of genetic, distance.

Stan had done (as he often had for other problems) some Monte Carlo simulations
assuming a constant population size of 2N, random pairing between the N males and
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GROWTH CURVE FOR EXPECTED 
NUMBER OF FEMALE ANCESTORS 
n GENERATIONS AGO 

As n increases, the expected number of female 
ancestors departs more and more from 2" be- 
cause of the increase in the number of shared 
female ancestors. 

in a total of ( i )  (y-^c} ways. To obtain q k ,  this number is then divided by (t), the 
total number of ways of choosing the s-element set. (I should add that if the words 
"mother" and "father" are interchanged, along with r and s ,  the answer is the same; 
though the resulting formula for q k  will look different, it is not different in value.) 

Using Eq. 1, we can now deduce the probability pn+l ,? that, (n  + 1) generations 
back, you yourself have t = r +s - k female ancestors. Let pn ,r and pn ,s be the respective 
probabilities that, among that generation, your mother has r female ancestors and that 
your father has s.  Since various values for r ,  s ,  and k = r + s - t can yield a particular 
t value, pn+l t  is a sum over those variables: 

The Laplace generating function for this sequence of probabilities, call it fn+\(x), is 
therefore given by 

Equation 2 does not lend itself to derivation of an elegant recurrence relation between 
fn+1 ( x )  and fn (x ) ,  but it does provide such a relation between An+1 and An, where An is 
the expected, or average, number of female ancestors n generations back. This relation 

in which 

(Interestingly enough, the right side of Eq. 4 is also the answer to a much simpler 
problem: If 2" objects are distributed randomly among N boxes, what is the expected 
number of non-empty boxes?) If we identify the term A: /N as the average number of 
shared female ancestors n generations back, then Eq. 4 defines just the logistic curve 
Stan and I had seen to describe the expected loss of ancestry; the difference between 
2" and An (the average number of your female ancestors n generations back) is just 
A:_ / N  (the average number of female ancestors among that generation shared by your 
parents). 

Now Mycielski's definition of the expected genealogical distance between two 
randomly chosen individuals of the same generation can be written xr 2(An - A^/N). 
We can evaluate this distance by using Eqs. 3 and 4: 

which, when doubled to include male ancestors, is just the result obtained by Kahane 
and Man-. 
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A fter I had "noticed" these simple relations (with Jan Mycielski's forbearance), I 
went to some of the literature of mathematical demography and population genetics 

and learned, of course, that it dealt with much more recondite problems, which I was 
loth to become involved in. Not equipped to make judgements, I nevertheless wondered 
why it seemed to skip over these simple zeroth approximations. And then I realized 
why I wished to talk about all this in a personal memoir about Stan Ulam. He, the 
"village idiot," the one who had the necessary "don't-know-how," did not skip over 
them. It was his style to value the art of successive approximation, of evading the 
big complexities until he was ready for them, the art sometimes called common sense. 
Many of his computer simulations were rough sketches of this kind yet could lead into 
deep water, such as his work on iterated nonlinear transformations. [See "Iteration of 
Maps, Strange Attractors, and Number Theory-An Ulamian Potpourri."] 

With a few further modifications this mathematical genealogy begins to resemble 
a real biological story, possibly our own, and with all kinds of further questions in 
tow. I bring a closure to this writing by mentioning two such modifications, neither of 
which is so complex as to obscure the essential simplicity. The first recapitulates our 
early work on branching processes (Hawkins and Ularn 1944). Such processes appear 
within the scheme of sexual reproduction as soon as we shift from pure genealogy to 
genetics and to an interest in evolution. I shall describe briefly the simplest example. 
The second modification is necessary to give context for the first. It generalizes the 
original scheme, moving it away from the unrealistic assumption of random pairing 
toward a pattern of "assortative" mating. This move is curiously parallel to the later 
work of Everett and Ulam on branching processes in several dimensions (Everett and 
Ulam 1948). 

Genetically considered, sexual reproduction is not only quadratic but also bi- 
quadratic: Each partner contributes to an offspring half of a diploid genome. But 
once inherited, the genetic makeup of the offspring remains constant, apart from mu- 
tations. Consider then the fate, within our model, of any individual genetic token, 
taken to be the only one of its kind. It will or will not be transmitted to an offspring 
with probability i. So the probability of its transmission to 0, 1, or 2 offspring is the 
coefficient of the corresponding power of x in the generating function g(x) = (i + \ x ) ~ .  
Its appearance in subsequent generations is described by a simple chain reaction with 
gn(x) = g (gn-i(x)), one just at the level of transition from a subcritical to a super- 
critical condition. In any later generation the expected number of descendants with the 
token is a constant, namely 1. The probability that the token eventually disappears is 
1, but its expected lifetime is infinite. The model itself forbids any evolutionary con- 
sequences. All of the model's essential properties are preserved, however, by allowing 
a variation of family size, insisting only on a mean value of 2. (Indeed even a slow 
exponential rate of population growth leaves essentials unchanged.) Then inheritance 
of any given "bad" gene will be decreased, and that token will have a finite expected 
lifetime. For a "good" gene the chain goes supercritical; with probability greater than 
1 the number of descendants with the "good" gene will grow exponentially with time 
and eventually dominate the population. 

In such a way we can mimic stochastic adaptation. That is a necessary condition 
for evolution, but not sufficient. Diveregent adaptation is also necessary. If different 
environmental conditions face two subpopulations, "good" genetic changes in one might 
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be "bad" in the other. If the two are long separated, genealogical distances become 
very great, and the original gene pool may finally fission into those of separate species. 

For such reasons we may consider a pattern of assortative mating that involves 
random pairing within subpopulations and rates of migration between them that decrease 
with some measure of distance. Successive generations in one subpopulation will 
gradually acquire more ancestors in the others. In the long run complete mixing 
will occur, but genealogical distances can now spread over a wide range. If the rate 
of mutation is assumed to be low but constant, genetic distances will increase with 
genealogical. 

All this seemed at first quite difficult to mathematize, but surprisingly it is not. 
Shared ancestries and genealogical distances can be expressed in closed algebraic forms 
that depend only on the rates of diffusion between the subpopulations and their sizes. 
I leave the subject at this point. Stan's work in biomathematics went further in other 
areas, but this extension of early work I think would have pleased him. 

I mentioned above that Stan was a bit standoffish about my involvement in work 
relating to the education of children. I was playing with them instead of him, my 

mathematical mentor! But I heartily forgive him. Some of what I had learned from him, 
that very spirit of play, I could take to the struggles for better science and mathematics 
teaching in the schools. Children don't have to be taught how to engage in serious play, 
usually, but teachers and other "educators" frequently do. They too often have lost the 
art, overwhelmed by mistaken notions of some puritan or utilitarian origin. Stan never 
lost it. 

David Hawkins earned his academic degrees in phi- 
losophy: an A.B. and M.A. from Stanford Univer- 
sity and a Ph.D. from the University of California, 
Berkeley. (The title of his doctoral dissertation, 
'A Causal Interpretation of Probability," reflects a 

combined interest in the humanities and science that 
continues to this day.) In 1943, after short teaching 
stints at Stanford and Berkeley, he joined the newly 
created Los Alamos laboratory, serving first as ad- 
ministrative aide to J. Robert Oppenheimer and later 
as historian. A year at George Washington Univer- 
sity was followed in 1947 by a move, which proved 
permanent, to the University of Colorado, Boulder. 
He is now a Distinguished Professor Emeritus at that 
institution. Hawkiis has devoted much of his pro- 
fessional life to projects concerning the teaching of 
mathematics and science. In 1970 he helped create 
the University of Colorado's Mountain View Cen- 
ter for Environmental Education, an advisory center 
for preschool and elementary teachers, and is still a 
participant in its activities. He has enjoyed leaves 
of absence at several colleges and universities in the 
United States and abroad and has been honored with 
a fellowship at the Institute for Advanced Study, a 
MacArthur Fellowship, membership in the Coun- 
cil of the Srnithsonian Institution, and chairmanship 
of the Colorado Humanities Program. In addition to 
numerous journal articles, he has written four books: 
Science and the Creative Spirit: Essays on Hurnan- 
istic Aspects of Science (Harcourt Brown, editor; 
1958), The Language of Nature: An Essay in the 
Philosophy of Science (1964), The Informed Vision: 
Essays on Learning and Human Nature (1 974), and 
The Science and Ethics of Equality (1977). 
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the 1930s and first published in this coun- 
try in 1957. See "Excerpts from The Scot- 
tish Book.") 

Ulam's incredible feel for mathematics 
was due to a rare combination of intu- 
itions, a common feature of almost all 
great mathematicians. He had a very 
good sense of combinatorics and orders 
of magnitude, which included the ability 
to make quick, crude, but in-the-ballpark 
estimates. Those talents, combined with 
the more ordinary abilities to analyze a 
problem by means of logic, geometry, or 
probability theory, already made him very 
unusual. Besides, he had a good intuition 
for physical phenomena, which motivated 
many of his ideas. 

Ulam's intuition, as exhibited in nu- 
merous problems formulated over a span 
of more than fifty years, covered an enor- 
mous range of subjects. The problems on 
computing, physical systems, evolution, 
and biology were stimulated by new de- 
velopments in those fields. Many others 
seemed to spring from his head. He usu- 
ally had some prime examples in mind 
that motivated his choice of mathemati- 
cal model or method. In this regard one 
of his favorite quotes, from Shakespeare's 
Henry VIII, was 

Things done without example 
in their issue 

Are to be feared. 

In approaching a complicated problem 
Stan first searched for simplicity. He 
had no patience for complicated theories 
about simple objects, much less complex 
objects. That philosophical dictum hap- 
pened to match his personality. He could 
not hold still for the time it would take 
to learn, let's say, modern abstract alge- 
braic geometry, nor could he put up with 
the generalities of category theory. Also, 
he was familiar with, and early in his ca- 
reer obtained fundamental results in, mea- 
sure and probability theories. That back- 
ground led him to approach many prob- 
lems by placing them in a probabilistic 

framework. Instead of considering just 
one possible outcome of a process, one 
can consider an infinite number of possi- 
ble outcomes at once by randomizing the 
process. Then one can apply the power- 
ful tools of probability, such as the laws 
of large numbers, to determine the like- 
lihood of a given outcome. The famous 
Monte Carlo method is a perfect exam- 
ple of that approach. In fact, one of 
the favorite sayings of Erdos and Ulam, 
both of whom worked in combinatorics 
(in which the number of outcomes is fi- 
nite) and probability, was 

The infinite we do right away; 
the finite takes a little longer. 

Stan's interest in probability dates back 
to the early 1930s, when he and Lomnicki 
proved several theorems concerning its 
foundations. In particular, they showed 
how to construct consistent probability 
measures for systems involving infinite 
(as opposed to finite) sequences of inde- 
pendent random variables and, more gen- 
erally, for Markov processes. (In Markov 
processes probabilities governing the fu- 
ture depend only on the present and are 
independent of the past.) At about the 
same time Kolmogorov, independently, 
proved his consistency theorem, which 
includes the Ulam and Lomnicki results 
as well as many more. Those results 
guarantee the existence of a probability 
measure on classes of objects generated 
by various random processes. The objects 
might be infinite sequences of numbers 
or more general geometrical or topologi- 
cal objects, such as the homeomorphisms 
(one-to-one, onto maps) discussed in de- 
tail later in this article. Stan's interest in 
probability continued after World War 11, 
when he and Everett wrote fundamental 
papers on "multiplicative" processes (bet- 
ter known as branching processes). Those 
papers were stimulated by the need to 
calculate neutron multiplication in fission 
and fusion devices. (David Hawkins, in 
'The Spirit of Play," discusses some of 

the earliest work that Stan and he did on 
branching processes.) 

Stan's background in probability made 
him a leader among the outstanding group 
of intellects who, during the late 1940s 
and early 1950s, recognized the potential 
value of the computer for doing experi- 
mental mathematics. They realized that 
the computer was an ideal tool for an- 
alyzing stochastic, or random, processes. 
While formal theorems gave rules on how 
to determine a probability measure on a 
space of objects, the computer opened up 
the possibility of generating those objects 
at random. Simply stated constructions 
that yield complicated objects could be 
implemented on the computer, and if one 
was lucky, demonstrable guesses could 
be made about their asymptotic, or long- 
term, behavior. That was the approach 
Stan took in studying deterministic as 
well as random recursions. In addition 
he invented cellular automata (lattices of 
cells and rules for evolution at each cell) 
and used them to simulate growth patterns 
on the computer. 

The experimental approach to mathe- 
matics has since become very popular and 
has tremendously enhanced our vision of 
complex physical, chemical, and biologi- 
cal systems. Without the fortuitous con- 
junction of the computer and probabil- 
ity theory, it is very unlikely that we 
would have reached today's understand- 
ing of those nonlinear systems. Such sys- 
tems present a challenge analogous to that 
Newton would have faced if the earth 
were part of a close binary or tertiary 
star system. (One can speculate whether 
Newton could have ever unraveled the 
law of gravitation from the complicated 
motions of such a system.) At present 
researchers are trying to formulate limit- 
ing laws governing the long-term dynam- 
ics of nonlinear systems that are analo- 
gous to the major limiting theorems in 
classical probability theory. The attempt 
to construct appropriate probability mea- 
sures for such systems is one of the topics 
I will discuss in more depth. 
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Other interests that Ulam maintained 
throughout his life were logic and set the- 
ory. I remember a conference' on large 
cardinal numbers in New York a few 
years ago. Stan was the honored partic- 
ipant. More than fifty years earlier he 
had shown that if a nontrivial probability 
measure can be defined on all subsets of 
the real numbers, then the cardinal num- 
ber, or "size," of the set of all the subsets 
exceeded the wildest dreams of the time. 
(See "Learning from Ulam: Measurable 
Cardinals, Ergodicity, and Biomathemat- 
ics.") But that large cardinal of his is 
minuscule compared with the cardinals of 
today. After listening to some of the con- 
ference talks, Stan said that he felt like 
Woody Allen in Sleeper when he woke up 
after a nap of many years and was con- 
fronted with an unbelievably large num- 
ber on a McDonald's hamburger sign. 

There is a serious aspect to that re- 
mark. Stan felt that a split between math- 
ematics and physics had developed during 
this century. One factor was the trauma 
that shook the foundations of mathemat- 
ics when Cantor's set theory was found 
to lead to paradoxes. That caused mathe- 
matics to enter a very introspective phase, 
which continues to this day. A tremen- 
dous effort was devoted to axiomatiz- 
ing mathematics and raising the level of 
rigor. Physics, on the other hand, expe- 
rienced an outward expansion and devel- 
opment. (The situation is somewhat re- 
versed today, as internal issues concern- 
ing the foundations of physics receive at- 
tention.) As a result, university instruc- 
tion of mathematicians has become so rig- 
orous and demanding that the mathemat- 
ical training of scientists has been taken 
over by other departments. Consequently, 
instruction in "applied" mathematics, or 
mathematical methods, is often at a fairly 
low level of rigor, and, even worse, some 
of the important mathematical techniques 
developed during this century have not 
made their way into the bag of tools of 
many physical scientists. Stan was very 
interested in remedying the situation and 

believed the Center for Nonlinear Studies 
at Los Alamos could play a significant 
role. 

Stan was associated, either directly or 
through inspiration, with the three re- 
search problems described in Part I11 of 
this article. Each is an example of how a 
probabilistic approach and computer sim- 
ulation can be combined to illuminate fea- 
tures of nonlinear systems. Since some 
background in modem probability theory 
is needed to follow the solutions to the 
problems, Part I1 provides a tutorial on 
that subject, which starts with a bit of his- 
tory and concludes with several profound 
and useful theorems. Fortunately Mark 
Kac and Stan Ulam gave a very insightful 
summary of the development of probabil- 
ity theory in their book Mathematics and 
Logic: Retrospect and Prospects. I have 
adapted and extended their discussion to 
meet the needs of this presentation but 
have retained their broad perspective on 
the history .of mathematics and, in some 
cases, their actual words. 

ts from the 

&ion of Ulam's own translation into En- 

and the work stimulated by Problem 43 
has played a major role in understanding 
the consequences of the 
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Part II 
PROBABILITY and NONLINEAR SYSTEMS 

*The material quoted in this tutorial from Mathe- 
matics and Logic has been reprinted with permis- 
sion from Encyclopedia Britannica, Inc. 

A TUTORIAL 
on PROBABILITY. 

MEASURE, and the laws of 
LARGE NUMBERS 

A 
s mentioned 
foundations 
outcomes is 

in the introduction, Stan Ulam contributed to the measure-theoretic 
that allow one to define a probability when the number of possible 
infinite rather than finite. Here I will explain why this extension 

is so necessary and so powerful and then use it to introduce the laws of large numbers. 
Those laws are used routinely in probability and its applications (several times, for 
example, during solution of the problems discussed in Part 111). Following the logic of 
Kac and Ulam I begin at the beginning.* 

Early Probability Theory 

Probability theory has its logical and historical origins in simple problems of 
counting. Consider games of chance, such as tossing a coin, rolling a die, or drawing 
a card from a well-shuffled deck. No specific outcome is predictable with certainty, 
but all possible outcomes can usually be listed or described. In many instances the 
number of possible outcomes is finite (though perhaps exceedingly large). Suppose we 
are interested in some subset of the outcomes (say, drawing an ace from a deck of 
cards) and wish to assign a number to the likelihood that a given outcome belongs to 
that subset. Our intuitive notion of probability suggests that that number should equal 
the ratio of the number of outcomes yielding the event (4, in the case of drawing an 
ace) to the number of all possible events (52, for a full deck of cards). 

This is exactly the notion that Laplace used to formalize the definition of probability 
in the early nineteenth century. Let A be a subset of the set 0 of all possible outcomes, 
and let P(A) be the probability that a given outcome is in A. For situations such that 
0 is a /rote set and all outcomes in 0 are equally probable, Laplace defined P(A) as 
the ratio of the number v(A) of elements in A to the total number v(f2) of elements of 
0; that is, 

However, the second condition makes the definition circular, for the concept of proba- 
bility then is dependent upon the concept of equiprobability. As will be described later, 
the more modem definition of probability does not have this difficulty. 

For now let us illustrate how Laplace's definition reduces the calculation of 
probabilities to counting. Suppose we toss a fair coin (one for which heads and tails 
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are equally probable) n times and want to know the probability that we will obtain 
exactly m heads, where 1 < m < n. Each outcome of n tosses c-an be represented 
as a sequence, of length n, of H 's and T's (HTHH . . . THH, for example), where H 
stands for heads and T for tails. The set 0 of all possible outcomes of n tosses is 
then the set of all possible sequences of length n containing only H ' s  and T's. The 
total number of such sequences, v(fl),  is 2". How many of these contain H exactly 
m times? This is a relatively simple problem in counting. The first H can occur in n 
positions, the second in n - 1 positions, . . . , and the mth in (n - m + 1) positions. So 
if the H 's were an ordered sample (HI,  Hz,.  . . , Hm), the number of sequences with m 
H 's would equal n(n - 1)(n - 2). . . (n - m + 1). But since all the H 's are the same, 
we have overcounted by a factor of m! (the number of ways of ordering the H 's). So 
the number of sequences of length n containing m H 's is 

n(n - 1) ...( n -in+ 1) - n ! 
- 

m! m!(n - m)! 

(The number n!/m !(n - m)!, often written (3, is the familiar binomial coefficient, 
that is, the coefficient of x m y n m  in the expansion of (x + y)"). Since the number of 
sequences with exactly m H ' s  is (3 and the total number of sequences is 2", we have 
by Laplace's definition that the probability P(m, n)  of obtaining m heads in n tosses 
of a fair coin is 

Consider now a coin that is "loaded" so that the probability of a head in a single 
toss is 116 (and the probability of a tail in a single toss is 516). Suppose again we toss 
this coin n times and ask for the probability of obtaining exactly m heads. To describe 
the equiprobable outcomes in this case, one can resort to the artifice of thinking of the 
coin as a six-faced die with an H on one face and T's on all the others. Using this 
artifice to do the counting, one finds that the probability of m heads in n tosses of the 
loaded coin is 

n ! 
P ( m ,  n) = 

m\{n - m)! ( A ) "  (i)n-m. 
Suppose further that the coin is loaded to make the probability of H irrational 

( \ /2 /2 ,  for example). In such a case one is forced into considering a many-faced die 
and passing to an appropriate limit as the number of faces becomes infinitely large. 
Despite this awkwardness the general result is quite simple: If the probability of a 
head in one toss is p ,  0 < p  < 1, and the probability of a tail is 1 - p  = q ,  then the 
probability of m heads in n tosses is 

n ! 
m!(n - m)! 

Building on earlier work of deMoivre, Laplace went further to consider what 
happens as the number of tosses gets larger and larger. Their result, that the number 
of heads tossed obeys the so-called standard normal distribution of probabilities, was a 
major triumph of early probability theory. (The standard normal distribution function, 
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STANDARD NORMAL 
DISTRIBUTION FUNCTION 

(b) STANDARD NORMAL DENSITY 
FUNCTION 

Fig. 1. Almost two centuries ago Laplace 
showed that the number Nu of heads ob- 
tained in a large number n of tosses of a 
coin (fair or loaded) follows the standard 
normal distribution of probabilities. More 
precisely, he showed that the probability 
of Nu being equal to or less than np + 
t \/np(1 (where p is the probability of 
a head in a single toss and t is some num- 
ber) can be approximated, for large n, by the 
standard normal distribution function F ( t )  
shown in (a). The derivative of a distribu- 
tion function (when it exists) is called a fre- 
quency, or density, function. Shown in (b) 
is the density function f(t) for the standard 
normal distribution function. Note that the 
value of the distribution fuction at some par- 
ticular value of t, say 0, is equal to the area 
under the density function from -00 to 3. 



Probability and Nonlinear Systems 

BERTRAND'S PARADOX 

What is the probability P that a 
randomly chosen chord of a circle is 
longer than the side of the 
equilateral triangle inscribed within 
the circle? 

This question cannot be answered by us- 
ing Laplace's definition of probability, since 
the set of all possible chords is infinite, as 
is the set of desired chords (those longer 
than the side of the inscribed equilateral tri- 
angle). However, the question might be ap- 
proached in the two ways depicted here and 
described in the text. Although both ap- 
proaches seem reasonable, each leads to a 
different answer! 

Fig. 2. 

call it F(t), is given by 

F (t) = - /' -x2 /2&.  

-m 
9 

the function dF /dt = ( l / v ^ )  e-t2/2 is called the standard normal density function.) 
The deMoivre-Laplace result can be stated as follows. As n gets larger and 

larger, the probability that NH , the number of heads tossed, will be less than or equal to 
np +t^/pqn (where t is some number) is approximated better and better by the standard 
normal distribution function. Symbolically, 

lim P(Nn < izp + t J n p q )  = - e-x2 /2&. 
n+cn 

In other words, P(NH < np + tJnpq)  is approximated by the area under the standard 
normal density function from -00 to t, as shown in Fig. 1. (In modem terminology NH 
is called a random variable; this term and the terms distribution function and density 
function will be defined in general later.) 

The de Moivre-Laplace theorem was originally thought to be just a special property 
of binomial coefficients. However, many chance phenomena were found empirically 
to follow the normal distribution function, and it thus assumed an aura of universality, 
at least in the realm of independent trials and events. The extent to which the normal 
distribution is universal was determined during the 1920s and 1930s by Lindeberg, 
Feller, and others after the measure-theoretic foundations of probability had been 
laid. Today the de Moivre-Laplace theorem (which applies to independent trials, each 
governed by the same probabilities) and its extension to Poisson schemes (in which 
each independent trial is governed by different probabilities) are regarded simply as 
special cases of the very general central limit theorem. Nevertheless they were the 
seeds from which most of modem probability theory grew. 

Bertrand's Paradox 

The awkwardness and logical inadequacy of Laplace's definition of probability 
made mathematicians suspicious of the whole subject. To make matters worse, attempts 
to extend Laplace's definition to situations in which the number of possible outcomes is 
infinite resulted in seemingly even greater difficulties. That was dramatized by Bertrand, 
who considered the problem of finding the probability that a chord of a circle chosen 
"at random" be longer than the side of an equilateral triangle inscribed in the circle. 

If we fix one end of the chord at a vertex of the equilateral triangle (Fig. 2a), we 
can think of the circumference of the circle as being the set Fl of all possible outcomes 
and the arc between the other two vertices as the set A of "favorable outcomes" (that 
is, those resulting in chords longer than the side of the triangle). It thus seems proper 
to take 113, the ratio of the length of the arc to the length of the circumference, as the 
desired probability. 

On the other hand we can think of the chord as determined by its midpoint and 
thus consider the interior of the circle as being the set 0 of all possible outcomes. The 
set A of favorable outcomes is now the shaded circle in Fig. 2b, whose radius is one- 
half that of the original. It now seems equally proper to take 114 for our probability, 
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the ratio of the area of the smaller circle to that of the original circle. AXIOM OF ADDITIVITY 
That two seemingly appropriate ways of solving the problem led to different 

answers was so striking that the example became known as "Bertrand's paradox." n 
It is not, of course, a logical paradox but simply a warning against uncritical use of 
the expression "at random." One must specify exactly how something is to be done at 
random. 

Coming as it did on top of other ambiguities and uncertainties, Bertrand's paradox 
Sample 

greatly strengthened the negative attitude toward anything having to do with chance 
and probability. As a result, probability theory all but disappeared as a mathematical 

Disjoint Events 
discipline until its spectacular successes in physics (in statistical mechanics, for ex- a,,d p2 
ample) revived interest in it early in the twentieth century. In retrospect, the logical 
difficulties of Laplace's theory proved to be minor, but clarification of the foundations probability of (E,  or ,I==) = 

of probability theory had a distinctly beneficial effect on the subject. Probability of El + Probability of E2 

Axioms of Modern Probability Theory 

The contemporary approach to probability is quite simple. From the set f2 of all 
AXIOM OF COMPLEMENTARITY 

- - -  

possible outcomes (called the sample space), a collection of subsets (called elementary 
events) is chosen whose probabilities are assumed to be given once and for all. One 
then tries to calculate the probabilities of more complicated events by the use of two 
axioms. 

Axiom of additivity: If El and Â£ are events, then "El or Â£2' is an event. Moreover, 
if El and E2 are disjoint events, (that is, the subsets corresponding to El and Ei have 
no elements in common), then the probability of the event "E1 or E2" is the sum of 
the probabilities of El and E2, provided, of course, that El and Â£ can be assigned 
probabilities. Symbolically, 

P(El U E2) = P(Ei) + P(E2) provided El  n E2 = 0. 

Sample Space 

Probability of (not E) = Probability of (0 - E )  = 

1 - Probability of E 

Axiom of complementarity: If an event E can be assigned a probability, then the 
event "not E" also can be assigned a probability. Moreover, since the whole sample 
space fl, is assigned a probability of 1, 

P(not E) = P(^t - E)  = 1 - P(E). 

Why these axioms? What is usually required of axioms is that they should 
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through approximating forms. Finally, at the heart of the subject is the selection 
of elementary events and the decision on what probabilities to assign them. Here 
nonmathematical considerations come into play, and we must rely upon the empirical 
world to guide us toward promising areas of exploration. These considerations also 
lead to a central idea in modem probability theory-independence. 

The Definition of Independence 

Let us return to the experiment of tossing a coin n times. In attempting to construct 
any realistic and useful theory of coin tossing, we must first consider two entirely 
different questions: (1) What kind of coin is being tossed? (2) What is the tossing 
mechanism? The simplest assumptions are that the coin is fair and the tosses are 
"independent." Since the notion of independence is central to probability theory, we 
must discuss it in some detail. 

Events E and F are independent in the ordinary sense of the word if the occurrence 
of one has no influence on the occurrence of the other. Technically, the two events 
(or, for that matter, any finite number of events) are said to be independent if the rule 
of multiplication of probabilities is applicable; that is, if the probability of the joint 
occurrence of E and F is equal to the product of their individual probabilities, 

Kac and Ulam justified this definition of independence as follows: 

"In other words, whenever E and F are independent, there should be a rule 
that would make it possible to calculate Prob. {E and F} provided only that one 
knows Prob. {E} and Prob. { F } .  Moreover, this rule should be universal; it should 
be applicable to every pair of independent events. 

Such a rule takes on the form of a function f (x,y)  of two variables x ,  y, and 
we can summarize by saying that whenever E and F are independent we have 

Prob. {E and F } = f (Prob. {E }, Prob. {F }) 
Let us now consider the following experiment. Imagine a coin that can be 

'loaded' in any way we wish (i.e., we can make the probability p of H any number 
between 0 and 1) and a four-faced die that can be 'loaded' to suit our purposes also. 
The faces of the die will be marked 1,2,3,4 and their respective probabilities will be 
denoted p ,  , p2, p3, p4; each pi is nonnegative and p l  + p2 + p3 + p4 = 1. We must now 
assume that whatever independence means, it should be possible to toss the coin and 
the die independently. If this is done and we consider (e.g.) the event 'H and (1 or 
2)' then on the one hand 

Prob. {Hand (1 or 2)} = f @ , p i  + p 2 )  
while on the other hand, since the event 'H and (1 or 2)' is equivalent to the event 
( H  and 1) or (H and 2),' we also have 

Prob. {H and(1 or 2)} = Prob. {H andl} + Prob. {H and 2} = f @ , p i )  + f (p,pz) 

Note that we have used the axiom of additivity repeatedly. Thus 

f @ , ~ \  + ~ 2 )  =f(P,p1)+f(P,p2) 
for all p , pl , p2 restricted only by the inequalities 
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0 5 / 7 5  11 O < P l ,  0<p21 P l + P 2 <  1 
If one assumes, as seems proper, that f depends continuously on its variables, it 

follows that f (x, y)  = xy and hence the probability of a joint occurrence of indepen- 
dent events should be the product of the individual probabilities. 

This discussion (which we owe to H. Steinhaus) is an excellent illustration of 
the kind of informal (one might say 'behind the scenes') argument that precedes a 
formal definition. The argument is of the sort that says in effect: 'We do not really 
know what independence is, but whatever it is, if it is to make sense, it must have 
the following properties . . .' Having drawn from these properties appropriate conse- 
quences (e.g., that f ( x , y )  = xy in the above discussion), a mathematician is ready to 
tighten things logically and to propose a formal definition." 

Having now defined independence as the applicability of the rule of multiplication 
of probabilities, let us again derive the probability of obtaining m heads in n tosses of 
a coin loaded so that p is the probability of a head in a single toss and q = 1 - p is 
the probability of a tail. If the tosses are assumed to be independent, the probability of 
obtaining a specified sequence of m heads (and (n - m) tails) is p m q n m  (by the rule 
of multiplication of probabilities). Since there are (i) such sequences, the probability 
of the event that exactly m out of n independent tosses will be heads is 

(Here we have applied the axiom of additivity). We have arrived at this formula, first 
developed almost two centuries ago, by using the modem concept of independence 
rather than Laplace's concept of equiprobability. 

Probability and Measure Theory 

As soon as we consider problems involving an infinite (rather than a finite) number 
of outcomes, we can no longer rely on counting to determine probabilities. We need 
instead the concept of measure. Indeed, probabilities are measures; that is, they are 
numerical values assigned to sets in some collection of sets, namely to sets in the sample 
space of all possible outcomes. The realization, during the early part of this century, 
that probability theory could be cast in the mold of measure theory made probability 
theory respectable by supplying a rigorous framework. It also extended the scope of 
probability theory to new, more complex problems. 

Before presenting the general properties of a measure, let us consider two problems 
involving an infinite number of outcomes. One is the problem that led to Bertrand's 
paradox, namely, find the probability that a chord of a circle chosen at random is 
longer than the side of an inscribed equilateral triangle. For that problem the event 
A, or subset A, of chords that are longer and the sample space 0 of all chords could 
be depicted geometrically. Thus the relative sizes (measures) of the two sets could be 
compared even though each was an uncountable set. (The measures of those sets were 
either lengths or areas.) Another situation in which an infinity of outcomes needs to 
be considered is the following. Suppose two persons A and B are alternately tossing 
a coin and that A gets the first toss. What is the probability that A will be the first 
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What is the 
first to toss 

probability that A will be the to toss a head? This can happen either on the first toss, or on the third (the first two 

a head? being tails), or on the fifth (the first four being tails), and so on. The event that A will 
toss the first head is thus decomposed into an infinite number of disjoint events. If the 
coin is fair and the tosses independent (so that the rule of multiplication applies), then 
the probabilities of these events are 

1 1 1  
- 
2'  23' $ 1  

and the probability that A will toss the first head is simply the sum of a geometric 
series: 

This result hinges on one very crucial proviso: that we can extend the axiom of 
additivity to an infinite number of disjoint events. This proviso is the third axiom of 
modem probability theory. 

Axiom of countable additivity: If E l ,  E2,  E3,  . . . is an infinite sequence of disjoint 
events, then U r  Ei is an event and 

Note that in solving the last problem we not only needed the axiom of countable 
additivity but also assumed that the probabilities used for finite sequences of trials 
are well defined on events in the space of infinite sequences of trials. Whether such 
probabilities could be defined that satisfy the axioms of additivity, complementarity, 
and countable additivity was one of the central problems of early twentieth-century 
mathematics. That problem is really the problem of defining a measure because, as 
we will see below, the axioms of probability are essentially identical with the required 
properties of a measure. 

Measure Theory. The most familiar examples of measures are areas in a plane or 
volumes in three-dimensional Euclidean space. These measures were first developed 
by the Greeks and greatly extended by the calculus of Newton and Leibnitz. As 
mathematics continued to develop, a need arose to assign measures to sets less "tame" 
than smooth curves, areas, and volumes. Studies of convergence and divergence of 
Fourier series focused attention on the "sizes" of various sets. For example, given 
a trigonometric series a,, cos n t + b,, sin n t, can one assign a measure to the set of 
t ' s  for which the series converges? (Cantor's set theory, which ultimately became the 
cornerstone of all of modem mathematics, originated in his interest in trigonometric 
series and their sets of convergence.) For another example, how does one assign a 
measure to an uncountable set, such as Cantor's middle-third set? (See "Cantor's 
Middle-Third Set".) Answers to such questions led to the development of measure 
theory. 

The concept of measure can be formulated quite simply. One wants to be able to 
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assign to a set A a nonnegative number p(A), which will be called the measure of A, 
with the following properties. 

Property 1: If Al,A2,. . . are disjoint sets that are measurable, that is, if each Ai can 
be assigned a measure /^(A,), then their union A l  U A2 U . . . (that is, the set consisting 
of the elements of A,, A2, . . .) is also measurable. Moreover, 

/^(Ai UA2U ... ) = / < A i ) + p O + * -  

Property 2: If A and B are measurable and A is contained in B (A c B), then B - A 
(the set composed of elements that are in B but not in A) is also measurable. By 
property 1 then, p.(B - A) = p(B) - /^(A). 

Two additional properties are assumed for measures on sets in a Euclidean space. 

Property 3: A certain set E, the unit set, is assumed to have measure 1: p(E) = 1. 

Property 4: If two measurable sets are congruent (that is, a rigid motion maps one 
onto the other), their measures are equal. 

When dealing with sets of points on a line, in a plane, or in space, one chooses E to be 
an interval, a square, and a cube, respectively. These choices are dictated by a desire to 
have the measures assigned to tame sets agree with those assigned to them previously 
in geometry or calculus. 

Can one significantly enlarge the class of sets to which measures can be assigned 
in accordance with the above properties? The answer is a resounding yes, provided 
(and it is a crucial proviso) that in property 1 we allow infinitely many A's. When we 
do, the class of measurable sets includes all (well, almost all-perhaps there may be 
some exceptions . . .) the sets considered in both classical and modem mathematics. 

Although the concept of countable additivity had been used previously by Poincare, 
the explicit introduction and development of countably additive measures early in this 
century by  mile Bore1 and Henri Lebesgue originated a most vigorous and fruitful 
line of inquiry in mathematics. The Lebesgue measure is defined on sets that are 
closed under countably infinite unions, intersections, and complementations. (Such a 
collection of sets is called a cr-field.) Lebesgue's measure satisfies all four properties 
listed above. Lebesgue's measure on the real line is equivalent to our ordinary notion 
of length. 

But how general is the Lebesgue measure? Can one assign it to every set on the 
line? Vitali first showed that even the Lebesgue measure has its limitations, that there are 
sets on the line for which it cannot be defined. The construction of such nonmeasurable 
sets involves the use of the celebrated axiom of choice. Given a collection of disjoint 
sets, one can choose a single element from each and combine the selected elements 
to form a new set. This innocent-sounding axiom has many consequences that may 
seem strange or paradoxical. Indeed, in the landmark paper on measurable cardinals 
mentioned at the beginning of this article, Ulam showed (with the aid of the axiom of 
choice) that if a nontrivial measure satisfying properties 1 through 3 can be defined on 
all subsets of the real line, then the cardinality of the real numbers is larger than anyone 
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CANTOR'S D uring the last quarter of the nineteenth century, Georg Cantor introduced a 
series of concepts that now form the cornerstone of all modem mathematics- 
set theory. Those concepts arose from Cantor's attempt to depict the sets 

MIDDLE- of convergence or divergence of, say, trigonometric series. Many such sets have 
pathological properties that are illustrated by his famous construction, the "middle- 
third" set. This set is described by the following recursion. Consider the closed unit THIRD SET interval [o, 11. First remove the middle-third open interval, obtaining two intervals 
[O, 1/31 and [2/3, 11. Next remove from each of these intervals its middle-third 
interval. We now have four closed subintervals each of length 119. Continue the 
process. After n steps we will have 2" closed subintervals of [0,1] each of length 

I 

I 1/3". From each of these we will remove the middle-third interval of length 1/3n+1. 
Continue the process indefinitely. Cantor's middle-third set, K, consists of all numbers 
in [0,1] that are never removed. ~ This set possesses a myriad of wonderful properties. For example, K is uncount- 
able and yet has Lebesgue measure zero. To see that K has measure zero, consider 

I the set {[O, 11 - K}, which consists of the open intervals that were removed at some 
I stage. At the nth stage 2 " '  open intervals of length 113" were removed from the 

remainder. So, by the countable additivity of measure, 

+ ' * + 2"-'/3* + .. . = (1/3)(1+ 2/23 + (2/3)2 + . . .) = 1. 

omplementarityÃ &(K) = 0, which is what we wanted to 
I 

~ on Cantons middle-third set is discussed 

I 
Invariant Measures, md 

I 
I 

I Consider the closed unit interval [O. 11 
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imagined. (See "Learning from Ulam: Measurable Cardinals, Ergodicity, and Biomath- BANACH-TARSKI PARADOX 
ematics.") Another example is the Banach-Tarski paradox. 

Banach and Tarski proved that each of two solid spheres Sl and Sz of different 
radii can be decomposed into the same finite number of sets, say SI = A \  UAz U . .  . UAn 
and s2 = B U B2 U . . . U Bn , such that all the A, 's and all the B, 's are among themselves 
pairwise disjoint and yet A, is congruent to B, for all i .  It is therefore impossible to 
define meaures for these sets, since their union in one fashion yields a certain sphere 
and their union in a different fashion yields a sphere of different size! That such 
a construction is possible rests on the complicated structure, earlier pointed out by 
Hausdorff, of the group of rigid motions of three-dimensional Euclidean space. 

We close this section on measure theory with a few comments from Kac and Ulam. 

"Attempts to generalize the notion of measure were made from necessity. . . . For 
example, one could formulate theorems that were valid for all real numbers except 
for those belonging to a specific set. One wanted to state in a rigorously defined How can it be that 

way that the set of these exceptional points is in some sense small or negligible. One s, = A, u As u . . . u An, 

could 'neglect' merely countable sets as small in the noncountable continuum of all Sg = 61 u 83 u . . . u 
points but in most cases the exceptional sets turned out to be noncountable, though 
still of Lebesgue measure 0. In the theory of probability one has many statements 
that are valid 'with probability one' (or 'almost surely'). This simply means that they 

and Ai is congruent to Bi for 1 5 i 5 n? 
hold for 'almost all' points of an appropriate set; i.e., for all points except for a set of 
measure 0. In statistical mechanics one has important theorems that assert properties 
of dynamic systems that are valid only for almost all initial conditions. 

One final remark: 
The notion or concept of measure is surely close to the most primitive intuition. 

The axiom of choice, that simply permits one to consider a new set Z obtained by 
putting together an element from each set of a family of disjoint sets, sounds so 
obvious as to be nearly trivial. And yet it leads to the Banach-Tarski paradox! 

One can see why a critical examination of the logical foundation of set theory 
was absolutely necessary and why the question of existence of mathematical con- 
structs became a serious problem. 

If to exist is to be merely free from contradiction as Poincari decreed, we have 
no choice but to learn to live with unpleasant things like nonmeasurable sets or 
Banach-Tarksi decompositions." 

Consistency Theorems for Probability Measures 

Now let us return to probability theory and consider the construction of countably 

additive probability measures. To see that a finitely additive measure cannot always be 
extended to a countably additive measure, consider the set 0 of integers and take as 
elementary events the subsets A of fl such that either the set A is finite or the set Q - A  
is finite. Set 

0 if A is finite 
1 if 0 - A is finite. 

So, p(f2) = 1 and p, satisfies the axioms of finite additivity and complementarity. 
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MAPPING ELEMENTARY EVENTS 
ONTO THE UNIT INTERVAL 
Let each elementary event be one of the sets 
of all infinite binary sequences with the first 
two digits fixed Then there are four elementary 
events. 

2 P(Ei)  = Length of the unit interval 
;=I 

However, if p were countably additive, then we would have the contradiction 

Now consider the problem of defining a countably additive probability measure 
on the sample space Cl of all infinite two-letter sequences (each of which represents 
the outcome of an infinite number of independent tosses of a fair coin). Take as an 
elementary event a set E consisting of all sequences whose first rn letters are specified 
(m = 1,2, . . .). Since there are 2rn such elementary events, we use the axiom of finite 
additivity to assign a probability P of 112"' to each such event. Can this function 
P, which has been defined on- the elementary events, be extended to a countably 
additive measure defined on the u-field generated by the elementary events? Ulam 
and Lomnicki proved such an extension exists for any infinite sequence of independent 
trials. Kolmogorov obtained the ultimate consistency results by giving necessary and 
sufficient conditions under which an extension can be made from a finitely additive 
to a countably additive measure, including the case of non-independent trials. These 
extensions put the famous limiting laws of probability theory, such as the laws of large 
numbers, on solid ground. 

In the case of coin tossing we have chosen our elementary events to be sets 
of infinite sequences whose first rn digits are fixed and have assigned them each a 
probability of 112'" in agreement with the finitely additive measure. Now we will 
show that the measure defined by these choices is equivalent to Lebesgue's measure on 
the unit interval [0,1] and is therefore a well-defined countably additive measure. First 
associate the digit 1 with a head and the digit 0 with a tail and encode each outcome 
of an infinite number of tosses as an infinite sequence of 1's and 0's (101 10..  . , for 
example), which in turn can be looked upon as the binary representation of a real number 

(0 < t < 1). In this way we establish a correspondence between real numbers in 
[0,1] and infinite two-letter sequences; the correspondence can be made one-to-one 
by agreeing once and for all on which of the two infinite binary expansions to take 
when the choice presents itself. (For instance, we must decide between .01000. . . and 
.OO 1 1 1 . . . as the binary representation of 1 /4.) 

The use of the binary system is dictated not only by considerations of simplicity. 
As one can easily check, the crucial feature is that each elementary event maps into an 
interval whose length is equal to the corresponding probability of the event. In fact, 
fixing the first rn letters of a sequence corresponds to fixing the first m binary digits of 
a number, and the set of real numbers whose first rn binary digits are fixed covers the 
interval between i/lm and (Â + 1)/2'", where ! is 0 , 1 , 2 , .  . . , or 2"' - 1, depending on 
how the first rn digits are fixed. Clearly the length of such an interval, 1 /l'", is equal to 
the probability of the corresponding elementary event. Thus the probability measure in 
the sample space fl, of all infinite two-letter sequences maps into the ordinary Lebesgue 
measure on the interval [0,1] and is therefore equivalent to it. 

The space of all infinite sequences of 0's and 1's is infinite-dimensional in the 
sense that it takes infinitely many "coordinates" to describe each "point" of the space. 
What we did was to construct a certain countably additive measure in the space that 
was "natural" from the point of view of independent tosses of a fair coin. 
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This approach immediately suggests extensions to more general infinite-dimension- 
a1 spaces in which each coordinate, instead of just being 0 or 1, can be an element of 
a more general set and need not even be a number. Such extensions, called product 
measures, were introduced by Lomnicki and Ulam in 1934. (Stan's idea of writing a 
book on measure theory emphasizing the probabilistic interpretation of measure is the 
subject of the accompanying letter from von Neumann to Ulam.) Measures for sets 
of curves have also been developed. The best known and most interesting of these 
was introduced by Norbert Wiener in the early 1920s and motivated by the theory of 
Brownian motion. Mathematicians have since found new and unexpected applications 
of the Wiener measure in seemingly unrelated parts of mathematics. For example, it 
turns out that the Wiener measure of the set of curves emanating from a point p in 
space and hitting a three-dimensional region R is equal to the electrostatic potential at 
p generated by a charge distribution that makes the boundary of the "conductor" R an 
equipotential surface on which the potential is equal to unity. Since the calculation of 
such a potential can be reduced by classical methods to solving a specific differential 
equation, we establish in this way a significant link between classical analysis and 
measure theory. 

Random Variables and Distribution Functions 

Having introduced the measure-theoretic foundations of probability, we now turn 
to a convenient formalism for analyzing problems in probability. In many problems the 
possible outcomes can be described by numerical quantities called random variables. 
For example, let X be the random variable describing the outcome of a single toss of 
a fair coin. Thus, set X equal to 1 if the toss yields a head and to 0 if the toss yields 
a tail. This is an example of an elementary random variable; that is, X is a function 
with a constant value on some elementary event and another constant value on the 
complementary event. In general a random variable is a real-valued function defined 
on the sample space 0 that can be constructed from elementary random variables by 
forming algebraic combinations and taking limits. For example, N H ,  the number of 
heads obtained in n tosses of a coin, is a random variable defined on the sample space 
consisting of all sequences of T's and H ' s  of length n; its value is equal to Ey=l XI, 
where X, = 1 if the ith toss is a head and Xi = 0 otherwise. 

In evaluating the outcomes of a set of measurements subject to random fluctuations, 
we are often interested in the mean, or expected, value of the random variable being 
measured. The expected value E(X) (or m)  is defined as 

where X (w) is the value of X at a point w in the sample space and P (w)  is the probability 
measure defined on the sample space. In the case of a fair coin, P(X = 1) = 112 and 
P(X = 0) = 112, so the expected value of X is a simple sum: 

The expected value of a random variable X is most easily determined by knowing 
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its distribution function F. This function, which contains all the information we need 
to know about a random variable, is defined as follows: 

where the set X < t is the set of all points w in il such that X(w) < t. The form of this 
function is particularly convenient. It allows us to rewrite E(X), which is a Lebesgue 
integral over an abstract space, as a familiar classical integral over the real line: 

Furthermore, if X has a density function f (t) = dF (t)/dt, then 

The expected value is one of the two commonly occurring averages in probability and 
statistics; the other is the variance of X ,  denoted by ^(x) or var(X). The variance is 
defined as the expected value of the square of the deviation of X from its mean: 

The standard, or root-mean-square, deviation of X is defined as a(X) = VvarCX). 
Figures 3 and 4 illustrate two distribution functions, the binomial distribution 

function for the number of heads obtained in five tosses of a fair coin and a normal 
distribution function with a positive mean. 

The Laws of Large Numbers 

A historically important problem in probability theory and statistics asks for esti- 
mates on how a random variable deviates from its mean, or expected, value. A simple 
rough estimate is, of course, its root-mean-square deviation. An estimate of a different 
nature was obtained by the nineteenth-century mathematician Chebyshev. This esti- 
mate, known as Chebyshev's inequality, gives an upper limit on the probability that a 
random variable Y deviates from its mean E(Y) by an amount equal to or greater than 
a (a  > 0): 

Chebyshev's inequality: P(\Y - E(Y)\ :> a )  < var(y)/a2. 

This fundamental inequality will lead us to the famous laws of large numbers, which 
tell us about average values for infinite sequences of random variables. We begin by 
returning again to the coin loaded in such a way that p is the probability of a head in 
a single toss. If this coin is tossed a large number of times n ,  shouldn't the frequency 
of heads, Nn I n ,  be approximately equal to p ,  at least in some sense? 

This question can be answered on several levels. Let Xi be the random variable 
describing the outcome of the ith toss. Set Xi = 1 if the ith toss is a head and Xi = 0 if 

BINOMIAL DISTRIBUTION FUNCTION 

Fig. 3. The distribution function F(t)  for the 
number of heads obtained in n independent 
tosses of a fair coin is a binomial distribu- 
tion, so called because the probability of ob- 
taining k heads in n tosses of the coin is 
given by a formula involving binomial coef- 
ficients, namely ( i )  &. Shown here is the 
binomial distribution function for the num- 
ber of heads obtained in five tosses of the 
coin. The value of F ( t )  equals the probabil- 
ity that the number of heads is equal to or 
less than t. 
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(a) NORMAL DISTRIBUTION 
FUNCTION 

0 " m - a  G, m + ( ~  
t 

(b) NORMAL DENSITY FUNCTION 

dF(t)  f ( t )  = - 
dt  

Fig. 4. So many random variables can be 

described, at least approximately, by the 
distribution function shown in (a) that it is 

known as the normal distribution function. 
Examples of such random variables include 

the number of heads obtained in very many 

tosses of a coin and, as a general exper- 
imental fact, accidental errors of observa- 
tion. The value of Fit)  equals the probabil- 

ity that the value of the random variable is 

equal to or less than (t  - m)/u, where m 

is the mean, or expected, value of the ran- 
dom variable and u is its standard deviation. 

(The mean here is assumed to be positive.) 

Shown in (b) is the normal density function 

f(t) = dF(t)/dt, which gives the probabil- 

ity that the value of the random variable is 

( t  - m)/u. 

the ith toss is a tail. Then NH = XI + . . . + Xn. Also, the distribution function for each 
Xi is the same, namely, 

t < o  

1 < t .  

(Random variables that have the same distribution function are said to be identically 
distributed.) Now the expected value of NH /n is easy to compute: 

Thus, on the simplest level our guess is right: The frequency of heads, N H / ~ ,  is 
approximately equal to p in the sense that the expected value of NH /n is p .  But surely, 
even in a very long series of tosses, it would be foolish to expect NH/n to exactly 
equal p (and NT/n to exactly equal 1 -p). What one is looking for is a statement that 
holds only in the limit as  the number of tosses becomes infinite. 

Bernoulli proved such a theorem: As n gets larger and larger, the probability that 
NH In differs from its expected value p by more than a positive amount e tends to 0: 

lim 
nÃ‘>o 

where P,, is the probability measure on fin, the space of all sequences of H 's and T's 
of length n. No matter what positive e is chosen, the probability that the difference 
between the frequency of heads and p ,  the probability of a head in a single trial, exceeds 
e can be made arbitrarily small by tossing the coin a sufficiently large number of times. 

Let us see how Bernoulli's theorem follows from Chebyshev's inequality. First, 
notice that var(Xi) = p(1 - p) for all i .  Second, the random variables Xi , .  . . , X,, are 
independent (the outcome of the ith toss has no influence on the outcome of jth). Now, 
from the fact that E (XY ) = E (X)E (Y ) for independent random variables, we get 

n 

var(X1 + - - - +Xn) = 1 var(xi) = np(1 - p).  
;=1 

So, by Chebyshev's inequality 

( l N ~ / n  -pi > e) < np(1 -p)/n2e2 = p ( l  -p)/e^n. 

Thus, for each e > 0 

Notice that the measure-theoretic background of Bernoulli's theorem is trivial (at 
least as far as coin-tossing is concerned), since the events of interest correspond to 
finite sets. That is, for each n we need only estimate how many trials of length n there 
are such that the number of heads differs from np by more than en. Nevertheless, the 
simple argument just given can be generalized to prove the famous weak law of large 
numbers. 
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Weak law of large numbers: Let Xi ,  X'7,X3, . . . be independent, identically distributed 
random variables such that var(Xl) < oo. Then for each e > 0 

lim P ([(XI + . . . + Xn)/n - E(Xl)l > e) = 0. 
n + o o  

In other words, for any positive e the probability that the deviation between the 
frequency in n trials and the expected value in a single trial exceeds e can be made 
arbitrarily small by considering a sufficiently large number of trials. 

For our coin-tossing example NH / n  approximately equals p in another sense also. 
Suppose one asks for the probability that the frequency of heads (in the limit as the 
number of tosses becomes infinite) is actually equal to p. The answer was obtained by 
Bore1 in 1909: 

Notice the complexity of the question. In order to deal with it, the sample space fi is 
now by necessity the set of all infinite two-letter sequences w and the subset of interest 
is the set A of those sequences for which 

M, (w) lim - = p .  
11+oo n 

where N,,(w) is the number of H ' s  among the first n letters of the infinite sequence 
w.  It takes some work just to show that A is an event in the sample space 0. Unlike 
the question that led to the weak law of large numbers, this question required the full 
apparatus of modem probability theory. An extension of Borel's result by Kolmogorov 
is known as the strong law of large numbers. 

Strong law of large numbers: Let X I ,  X 2 ,  X 3 ,  . . . be independent, identically distributed 
random variables such that E(\Xi\) < oo. Then 

An Application of the Strong Law of Large Numbers. Let us illustrate the power 
of the strong law of large numbers by using it to answer the following question: What 
is the probability that, in an infinite sequence of tosses of a fair coin, two heads occur 
in succession? 

We will first answer this question using only the rules governing the probabilities 
of independent events. In particular, we will use the axioms of countable additivity and 
complementarity and the rule of multiplication of probabilities. Let A<.- be the event that 
a head occurs on the (2k - 1)th toss and on the (2k)th toss. Each A;- is an elementary 
event, and P(Ak) = 114. Now, by the axiom of countable additivity, [jÂ¡Â Ak is an 
event; in particular, it is the event that, for some k, heads occur on the (2k - 1)th and 
2kth tosses. By the axiom of complementarity, 
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Since the eventsAi,A2,A 3, . . .  are independent, the events 0 - A i , O - A 2 , Q - A 3 , . . .  
are also independent, and we can apply the rule of multiplication of probabilities: 

Finally, by the axiom of complementarity, P ( U A ~ )  = 1; that is, there exists, with 
probability 1, some k such that the (2k - 1)th and (2k)th tosses are heads. 

Now we will answer the same question by using the strong law of large numbers. 
Let Xi be the random variable such that 

1 i f w ? A ;  
Xi (w) = 

0 i f w $ A ;  

Then X I ,  Xz, X3, . . . is a sequence of independent random variables. Also, they all have 
the same distribution: (P(Xi = 1) = 114, P(X; = 0) = 314, and E (Xi) = 114. Therefore, 
according to the strong law of large numbers, 

lim (XI + . . . +Xll)/n = 114 with probability 1 
n-+m 

This result is stronger than that obtained above. It guarantees, with probability 1 ,  the 
existence of infinitely many k's such that heads occur on the (2k - 1)th and (2k)th 
tosses; further, the set of all such k's has an arithmetic density of 114. 

Borel's theorem marked the beginning of the development of modem probabil- 
ity theory, and Kolmogorov's extension to the strong law of large numbers greatly 
expanded its applicability. To quote Kac and Ulam: 

"Like all great discoveries in mathematics the strong law of large numbers has 
been greatly generalized and extended; in the process it gave rise to new problems, 
and it stimulated the search for new methods. It was the first serious venture out- 
side the circle of problems inherited from Laplace, a venture made possible only by 
developments in measure theory. These in turn were made possible only because of 
polarization of mathematical thinking along the lines of set theory." 

The polarization Kac and Ulam were referring to concerns the great debate at the 
turn of the century about whether the infinite in mathematics should be based upon 
Cantor's set theory and its concomitant logical difficulties. The logical problems have 
been met, and today we use Cantor's theory with ease. 

The Monte Carlo Method. One of Stan Ulam's great ideas, which was first developed 
and implemented by von Neumann and Metropolis, was the famous Monte Carlo 
method. It can be illustrated with Chebyshev's inequality. Suppose that we need 
to quickly get a rough estimate of hw (sinx)/x3 dx. Setting t = \/x, the problem then 

is to estimate t sin(1 I t )  dt. Let y , ,  . . . , yn be independent random variables each 
uniformly distributed on [O, I ] .  That is, for all i, P (a < yi < b) = b - a ,  where (a , b)  
is a subinterval of [0,1]. Now set f (t) = t sin(l/t) and for each i let Xi = f (y; ) .  Then 
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XI, . . . , Xn is a sequence of independent identically distributed random variables. Also, 

and 

By Chebyshev's inequality we have 

< var (1 /n) EX; /a2 $ var(x1)/na2 -) ( : ) 
Thus if n is large, (1/n) xk, Xi is, with high probability, a good estimate of the value 
of the integral. For example, if a = 0.005 and n = 134,000, then 

In other words, if we chose 134,000 numbers y i ,  . . . ,y134,000 independently and at 
random from [O, 11, then we are 90 percent certain that (1 / 134,000) ~ , ' ~ ~ ' 0 0 0  yi sin(1 /y; ) 
differs from the integral by no more than 0.005. So, if we can statistically sample the 
unit interval with numbers yl , . . . , yn , then 

(The reader may well wonder why such a large number of sample points is required 
to be only 90 percent certain of the value of the integral to within only two decimal 
places. The answer lies in the use of Chebyshev's inequality. By using instead the 
stronger central limit theorem, which will be introduced below, many fewer sample 
points are needed to yield a similar estimate.) 

The Monte Carlo method is a wonderful idea and, of course, tailor-made for 
computers. Although it might be regarded simply as an aspect of the more ancient 
statistical sampling technique, it had many exciting new aspects. Three of these are 
(1) a scope of application that includes large-scale processes, such as neutron chain 
reactions; (2) the capability of being completely implemented on a digital computer; 
and (3) the idea of generating random numbers and random variables. How do we 
mechanically produce numbers yl , . . . , y,, in [O, 11 such that the y; 's are independent 
and identically distributed? The answer is we don't. Instead, so-called pseudo-random 
numbers are generated. Many fascinating problems surfaced with the advent of Monte 
Carlo. Dealing with them is one of the major accomplishments of the group of intellects 
gathered at Los Alamos in the forties and the fifties. (See "The Beginning of the Monte 
Carlo Method.") 
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Central Limit Theorem 

We close this tutorial by returning to the deMoivre-Laplace theorem and inter- 
preting it in the modem context. Let Xi be a random variable describing the outcome 
of the ith toss of a coin; set Xi = 1 if the ith toss is a head and Xi = 0 otherwise. Let 
Sn be the number of heads obtained in n tosses; that is Sn = XI + a . + X,, . Then the 
de Moivre-Laplace theorem can be stated as follows: 

Now np = nE(Xl) = E ( S n )  and \/np(\-) = &(Xi) = cr(Sn). So if we "renormal- 
ize" S,, by setting Yn = (s,, - E ( s ~ ) ) / ~ ~ ( s ~ ) ,  each Yn has a mean of 0 and a standard 
deviation of 1. Then the equation above tells us that the distribution function of Y,, 
tends to the standard normal distribution. The central limit theorem is a generalization 
of this result to any sequence of identically distributed random variables. We state the 
central limit theorem formally. 

Central limit theorem: Let Xi,  X2, X3, . . . be a sequence of independent, identically 
distributed random variables with E(Xl) = m and var(Xi) = u2 < oo. Set S,, = 

Xi + - - - + X , , .  Then 

Thus the normal distribution is the universal behavior in the domain of independent 
trials under renormalization. Its appearance in so many areas of science has led to 
many debates as to whether it is a "law of nature" or a mathematical theorem. 

Thanks to the developments in modem probability theory, we begin our investi- 
gations with many powerful tools at our disposal. Those tools were forged during a 
period of tremendous upheavals and turmoil, a time when very careful analysis carried 
the day. At the heart of that analysis lay the concept of countable additivity. Stan 
Ulam played a seminal role in developing these tools and presenting them to us. 
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PROBABILISTIC 
APPROACHES 

to NONLINEAR 
PROBLEMS 

Problem 1. Energy Redistribution: 
An Exact Solution to a Nonlinear, Many-Particle System 

Ulam's talent for seeing new approaches to familiar problems is evident in one 
he posed concerning the-distribution of energy in physical systems. Will the energy 
distribution of an isolated system of N interacting particles always evolve to some 
limiting energy distribution? And, if so, what is the distribution? (Note that this 
question differs from the one asked in statistical mechanics. There one assumes that 
at equilibrium the system will have the most probable distribution. One then derives 
that the most probable distribution is the Boltzmann distribution, the density of which 
is f l  .) 

Obviously, following the evolution of a system of N interacting particles in 
space and time is a very complex task. It was Stan's idea to simplify the situation 
by neglecting the spatial setting and redistributing the energy in an abstract random 
manner. What insights can one gain from such a simplification? One can hope for 
new perspectives on the original problem as well as on the standard results of statistical 
mechanics. Also, even if the simplification is unrealistic, one can hope to develop some 
techniques of analysis that can be applied to more realistic models. In this case David 
Blackwell and I were able to give an exact analysis of an abstract, highly nonlinear 
system by using a combination of the machinery of probability theory and higher order 
recursions (Blackwell and Mauldin 1985). We hope that the technique will be useful 
in other contexts. 

Let us state the problem more clearly and define what we mean by redistributing 
energy in an "abstract random manner." Assume we have a vast number of indistin- 
guishable particles with some initial distribution of energy, and that the average energy 
per particle is normalized to unity. Further, let us assume the particles interact only 
in pairs as follows: At each step in the evolution of the system, pair all the particles 
at random and let the total energy of each pair be redistributed between the members 
of the pair according to some fixed "law of redistribution" that is independent of the 
pairs. Iterate this procedure. Does the system have a limiting energy distribution and, 
if so, how does it depend on the redistribution law? 

Part 111 
PROBABILITY and NONLINEAR SYSTEMS 

The Simplest Redistribution Law. To begin we will consider the simplest redistri- 
bution law: each particle in a random pair gets one-half the total energy of the pair. If 
the number of particles in the system is finite, it is intuitively clear that under iteration 
the total energy of the system will tend to become evenly distributed-all the particles 
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SIMPLEST LAW FOR ENERGY 
REDISTRIBUTION 

Random Pair ' Outcome ' after Redistribution 

Equal Sharing 
of Total Energy 

LIMITING ENERGY DISTRIBUTION 

t 

Fig. 5. Consider a system of N particles 
with some arbitrary initial distribution of en- 

ergy. Assume that the initial mean energy 
is 1 and that the particles interact in pairs. 
Assume further that the total energy of an 
interacting pair is redistributed so that each 
member of the pair acquires one-half the to- 
tal energy of the pair. Then with probability 
1 the system reaches a limiting energy dis- 
tribution described by a step function with a 
step height of 1 at t = 1. That is, the proba- 
bility that the energy per particle is less than 
t equals 0 for t < 1 and equals 1 (the initial 
mean energy) for t > 1. 

will tend to have the same energy. So, a system with only finitely many particles has a 
limiting distribution of energy, namely, a step function with a jump of size 1 at t = 1 ,  
and moreover, no matter what the initial distribution of energy is, the system tends to 
this distribution under iteration. 

Even for a system with a continuum of particles, our observations for the finite 
case still hold. In order to see this, we formalize the problem in terms of probability 
theory. 

Let X be a random variable corresponding to the initial energy of the particles. 
Thus, the distribution function Fl associated with X is the initial distribution of energy: 
F l ( t )  = P(X < t) is the proportion of particles with energy less than t. Our arguments 
and analysis will be based only on the knowledge of the energy distribution function and 
how it is transformed under iteration by the redistribution law. In terms of distribution 
functions, our normalization condition, that the average energy per particle is unity, 
means that the expected value of X , fnm t d F  At), equals 1. 

We seek a random variable T(X) corresponding to the energy per particle after 
applying the redistribution law once. To say that the indistinguishable particles are 
paired a t  random in the redistribution process means that, given one particle in the 
pair, we know nothing about the energy of the second except that its distribution 
function should be the initial distribution function F l .  In other words, we can describe 
the energy of the randomly paired particles by two independent random variables XI 
and X2, each having the same distribution as X. Thus the simplest redistribution law, 
according to which paired particles share the total energy of the pair equally, can be 
expressed in terms of T(X), X1, and X2 as 

The new distribution of energy, call it F2, that describes the random variable T(X) 
will be a convolution of the distributions of XI 12 and X2/2. Since XI and X2 both have 
the distribution F l ,  the distribution F2 of T ( X )  is given by 

To cany out the second iteration, we repeat the process. The energy T ~ ( x )  = 
T (T(x)) will have the same distribution as (Yl +Y2)/2, where Yl and Y2 are independent 
and each is distributed as T(X). In other words, if we let XI ,  X2, X 3 ,  and X4 be 
independent and distributed as XI ,  then Yl is distributed as (XI + X^)/2, and Y2 is 
distributed as (X3 +X^)/2. The energy is distributed as T*(x) = (Xi + X2 + X3 + X4)/4. 

After n iterations the energy per particle will have the same distribution as T"(X) = 
(Xi +- - -+Xy)/2", where the Xi's are independent and distributed as X. This expression 
for Tn(X) is exactly the expression that appears in the strong law of large numbers (see 
page 71). Therefore the strong law tells us that the limiting energy of each particle w 
as n Ã‘ cc is 

X1(w) + . .  +Xp(w) 
lim T n  (X (w)) = lim 

2" 
= E(Xl) = 1, almost surely, 

11- n-w 

where E(Xl) is the expected value of the initial distribution Thus, after n iterations of 
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this random process, the energies of almost all particles converge to unity. In terms of 
distribution functions, we say that in the space of all "potential" actualizations of this 
iterative random process, almost surely, or with probability 1, the limiting distribution 
of energy will be a step function with a jump of size 1 at t = 1 (Fig. 5). 

Notice that for this simplest redistribution law (1) the redistribution operator T is 
a simple linear operator and (2) even so, the strong law of large numbers is needed to 
determine the limiting behavior. 

More Complicated Redistribution Laws. Stan proposed more interesting laws of 
redistribution. The redistribution operator T for each of these laws is nonlinear, and 
different techniques are needed to analyze the system. For example, after pairing the 
particles, choose a number a between 0 and 1 at random. Then instead of giving 
each particle one-half the total energy of the pair, let us give one particle a times the 
total energy of the pair and give the other particle (1 - a)  times the total energy. The 
energy T(X) will then have the same distribution as U (XI +X2), where U is uniformly 
distributed on [O, 11 (that is, all values between 0 and 1 are equally probable) and U , X I ,  
and X2 are independent. What happens to this system under iteration is a much more 

RANDOM LAW FOR ENERGY 
REDISTRIBUTION 

LIMITING ENERGY DISTRIBUTION 
A 

complicated matter. For one thing, unlike the redistribution operator in the simplest 
case, the operator T is now highly nonlinear and the law of large numbers is not 
available as a tool. A new approach is required. To get an idea of what to expect, 
Stan first used the computer as an experimental tool. From these studies he correctly 
guessed the limiting behavior (Ulam 1980): no matter what the initial distribution of 
energy is, we have convergence to the exponential distribution (Fig. 6). 

Let me indicate how Blackwell and I proved this conjecture. We used a classical I 
method of moments together with an analysis of a quadratic recursion. For now let us o 1 

t 
assume that a stable limiting distribution exists and let X have this distribution. Then 
T(X) = U(X1 + X2) has the same distribution. So, calculating mn, the nth moment of 
X (that is, the expected value of Xn), we have 

mn = E ( x n )  = E (T(x)") = E ((u(x, +x2))") = E ( u n ( x ,  +x2)I7). 

By independence and the binomial theorem 

Fig. 6. Consider a system identical to the 
one described in Fig. 5 except that the total 
energy of an interacting pair is redistributed 

randomly between the members of the pair. 
In particular, assume that one particle re- 
ceives a randomly chosen fraction a of the 
total energy and the other particle receives 

1 
, = E(U")E ((x, + x ~ ) ~ ! )  = -E E ( x ~ - P )  the remainder. The system still reaches a 

n + 1 limiting energy distribution, one equal to 0 
for t < 0 and equal to 1 - e t  for t > 0. 

Since X1 and X2 are independent, the expected value of each product is equal to the 
product of the expected values, E (X < X ; p )  = E (X )E (Xl -p). Substituting this into 
the equation above and using the definition of moments, we have 

Using the fact that mo = 1, we solve for mn. 
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This is a quadratic recursion formula. Substituting the initial condition ml = 1, we find 
that m2 = 2 and m3 = 6. An induction argument shows that mn = n!  for all n .  But 
n! is the nth moment of the exponential distribution! Of course, our assumption is that 
a stable distribution and all its moments exist. It takes some work to prove that this 
assumption is indeed true and that no matter what initial distribution one starts with, 
the distribution of the iterates converges to the exponential. 

It should not be too surprising that our result agrees in its general form with 
the Boltzmann distribution of statistical mechanics. After all, both are derived from 
similar assumptions. The Boltzmann distribution is derived from the assumptions that 
( I )  energy and the number of particles are conserved, (2) all energy states are equally 
probable, and (3) the distribution of energy is the most probable distribution. In our 
problem we also assumed conservation of energy and number of particles. Moreover, 
taking U in our redistribution law to be the uniform distribution makes all energy states 
equally probable. The difference is that the iteration process selects the most probable 
distribution with no a priori assumption that the most probable distribution will be 
reached. 

We can go further and replace U by any random variable with a symmetric distri- 
bution on [0,1]. The symmetric condition insures that the particles are indistinguishable. 
We call the distribution of U the redistribution law. Again, one obtains a quadratic 
recursion formula. Blackwell and I analyzed this formula and showed that for every 
such U the system tends toward a stable limiting distribution. In other words, there is 
an attractive fixed point in the space of all distributions. Moreover, there is a one-to-one 
correspondence between the stable limiting distribution and the redistribution law that 
yields it. 

Momentum Redistribution. There is a corresponding momentum problem. Assume 
we have a vast number of indistinguishable particles (all of unit mass) with some initial 
distribution of momentum. Let us assume that the particles interact in pairs as follows. 
At each step in the evolution of the system, pair all the particles at random and let the 
total momentum of each pair be redistributed between the members of the pair according 
to some law of redistribution that is independent of the pairs. Of course, we wish to 
conserve energy and momentum. These conservation laws place severe constraints on 
the possibilities. If v l  and v2 are the initial velocity vectors of two particles in a pair 
and v\ and v i  are the velocity vectors after collision, then by momentum conservation 

and by energy conservation 

I l 2  + 11v2112 = llv/, 1 1 2  + llv2112. 

Consider this process in the center-of-mass frame of reference. Let A; be the fraction 
of the total kinetic energy that particle i has after collision and let ui be the unit vector 
in the direction of the velocity of particle i. Then 

and 
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From these equations it follows that Ai  = A2 = 112 and v2 = -vi. What this means 
is that all we can do is choose in the center-of-mass frame a new direction vector 
for one of the two colliding particles. Everything else is then determined. The other 
particle goes in the opposite direction, and the total kinetic energy in the center-of- 
mass frame is divided evenly between the two particles. Thus, the only element of 
randomness is in how the new direction vector is chosen. If all directions are assumed 
to be equiprobable, then it can be shown that no matter what the initial distribution of 
velocity is, the system tends under iteration to a limiting distribution that is the standard 
normal distribution in three-dimensional Euclidean space SR3. We have thus rederived 
the Maxwell-Boltzmann distribution of velocities. Here again we can go further and 
consider more complicated redistribution laws. 

Suppose one allows ternary collisions instead of binary collisions. Then there are 
more degrees of freedom, and the problem again becomes interesting mathematically. 
The results of our analysis show that the situation is much like the redistribution of 
energy in that the limiting distribution of velocity depends on the law of redistribution 
of velocity. 

Problem 2. Geometry, Invariant Measures, and Dynamical Systems 

The intimate relationship among geometry, measures, and dynamical systems that 
was elucidated in the last century continues to deepen and hold our attention today. 
Poincare made several monumental contributions to this development in his treatise 
Les Mithodes Nouvelles de la Micanique Celeste. One major issue he considered 
concerned the stability of motion in a gravitational field such as that of our solar system. 
Would small perturbations from any given set of initial orbits lead to a collision of the 
planets? A tremendous amount of work had been done on this dynamical system, 
but the governing system of differential equations remained unsolved. Faced with this 
situation, Poincare made a wonderful flanking maneuver by introducing "qualitative" 
methods that involved measures. 

For the setting consider the motion of N bodies and the corresponding phase space 
S ,' whose 6N coordinates code the position and momentum of each of the N bodies. 
The phase space is a subset of Euclidean 6N-space and each point of S corresponds to 
a state of the system. Consider T, the time-one map of S . That is, if s is the initial 
state of the system, then T(s) is the state of the system one time unit later. Now, 
various notions of stability can be given in terms of the properties of T .  One of these 
is recurrence, or, as Poincar6 said, "stabilit6 la Poisson." A state s is said to be 
recurrent provided that if the system is ever in s ,  then it will return arbitrarily close to 
s infinitely often. Formally, s is recurrent provided that for every open region U about 
s there are infinitely many positive integers n such that Tn(s) is in U .  Poisson had 
earlier attempted to show this kind of stability for the restricted three-body problem. 
Poincar6 used the fundamental tenet of measure theory, countable additivity, to prove 
that the set of all points s in the phase space for which recurrence does not occur is of 
measure zero. 

Recurrence Theorem: Let B = (s â S 1s is not recurrent). Then B has measure zero. 

Poincare's proof of this theorem (see "The Essence of Poincare's Proof of the Re- 
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balls may be). For each n let Bn be the 
set of points in Un that are not recurrent; 
that is, En consists of all points s ? Un 
such that Tp(s) ? UÃ for only finitely 
many positive integers p .  Now consider 
the ~ t t  5 = Uzi B n  g that is, the set of 
all points that are not recurrent. Since 
the measure v is assumed to be countably 
additive, we have v(5) < zz ~ ( 5 % ) .  
Poincarii also assumed that the notion of 
volume could be extended to sets Bn that 
are more complicated than open regions. 

v (& )=  0 for each 8. 
The 

has measure zero. Bi! 

currence Theorem") is a shining jewel that made clear to the mathematical world the 
importance of countable additivity in the development of measure. 

But what measure did Poincar6 have in mind here? After all, there is an entire 
grab bag of measures on the subsets of S. In the case of the N-body problem, since 
the system is a Hamiltonian system, the geometry of the phase space clearly indicates 
the correct measure. Let us see why. Liouville had proved the seminal result that if 
the map T that describes the time evolution of the system is a Hamiltonian, then T 
is volume-preserving in the phase space. That is, if U is an open set or region, then 
v (U ) = v (T (U )) , where v (E) is the volume of E . Poincar6 carried out his analysis on 
a "surface of constant energy." Since the N-body problem is a conservative system, 
the function T leaves the total energy invariant and therefore maps each such surface 
into itself. Moreover, since T is a Harniltonian, it is volume-preserving on this surface. 
Consequently, the geometric structure of the surface determines the appropriate measure 
to use. Since the surface is a manifold, by definition there is a positive integer m such 
that each point of S lies in a region that is geometrically the same as a piece of Euclidean 
m-dimensional space. So, the measure to use on the manifold S is the one we naturally 
associate with Euclidean m-dimensional space, namely, m-dimensional volume. 

Geometry and Dynamical Systems 
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To summarize, the N -body problem is a classical dynamical system in which the 
time-one map T is a continuous one-to-one map of the phase space X onto itself. 
The inverse map, T 1 ,  is also continuous. Thus, T is a homeomorphism. There is a 
natural measure on the phase space X that is invariant under T. From one point of 
view, this measure is the volume element corresponding to the dimension of the phase 
space. From another viewpoint the natural invariant measure expresses the fact that the 
system is a Hamiltonian system. In the phase space X a surface S of constant energy 
forms an invariant set, and again there is an invariant measure on S corresponding to 
our ordinary notion of volume. The set B of all points that are not recurrent is also 
an invariant set with respect to T. However, it is not at all clear that we can define 
some natural invariant measure on B that is both nonzero and invariant under T. Many 
dynamical systems being studied today "live" on invariant sets that, like B, are not 
manifolds. Instead they are "pathological" sets, sets that at one time were thought to 
be the private domain of the purest and most abstract mathematicians. The examples 
range from Cantor sets to nowhere-differentiable curves to indecomposable continua. 
Many of these pathological invariant sets are "strange attractors" of dynamical systems; 
the system is "attracted" in the sense that it will eventually end up on the set from any 
starting point. (The discovery of one of the first strange attractors is described in the 
section Cubic Maps and Chaos of the article "Iteration of Maps, Strange Attractors, 
and Number Theory-An Ularnian Potpourri.") 

Properties of Invariant Sets. Let us now indicate some of the problems and 
techniques used in studying such sets in the context of dynamical systems. We will 
consider discrete dynamical systems, that is, systems in which the time evolution is 
described by discrete steps. We consider a function T that maps a space X into itself 
and the iterates of T, that is, T' , T', r 3 ,  . . . , where Tn+' (x) = T (T "(x)) . We are 
interested in an invariant set-a subset M of X such that T(M) c M. The simplest 
invariant set consists of a fixed point x such that T(x) = x; a more complicated invariant 
set is a periodic orbit, a set consisting of the points x,  T(x), . . . , T"-~(x), and Tn(x) = x. 
Invariant sets are further classified according to how points near the invariant set behave 
under T. An invariant set M is called an attractor if there is a region U surrounding 
M such that if x U, then Tn(x) gets closer and closer to M as n increases. On the 
other hand, M is called a repeller if there is a region U surrounding M such that if 
x e (U - M ), then Tn(x) is not in M for n sufficiently large. For example, if X is the 
real number line, then 0 is an attracting fixed point for T(x) = x/2 and a repelling fixed 
point for T^(x) = 2 x .  The intrinsic properties of an invariant set are also of interest. 
For example, one might want to know whether there is a point x of M such that the 
orbit of x,  that is, x,  T(x), T~(x) ,  . . . , is dense in M. If T is an irrational rotation of 
the plane, then the unit circle is invariant and the orbit of every point on the circle is 
dense in the circle. Another possibility is that T is topologically mixing on M;  that is, 
for every region U of M there is some n such that M c Tn(U). 

One central problem we will look at in some depth is the construction of "natural" 
or useful invariant measures for the sets M.  In particular we want a measure p such 
that p(X - M )  = 0 and p (T-'(B)) = d B )  for each measurable subset B of M.  That is, 
the measure is zero for points outside the invariant set M and is invariant with respect 
to the inverse of T. 
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Cantor's Set as an Invariant Set. Let us consider a simple example of a map 
whose invariant set is Cantor's middle-third set. Let X be the real number line and let 
T(x) = (3/2)(1 - \2x - 1 I). Then T is a two-to-one map of X into itself, the "triangle 
function" whose graph is shown in Fig. 7. This transformation can also be written in 

I the following form: 
if x < 112 

T (x) = 

Now consider what happens to x under the iterates of T. If x < 0, then Tn(x) = 3"x 
and Tn(x) + -a. If 1 < x ,  then T(x) < 0 and higher iterates are given by 3"(1 -x). 
Again, T" (x) + -00. Thus, the iterates of all points outside the interval [0,1] are 
repelled. On the other hand, x = 0 is a fixed point, and, since T(l/4) = 314 and 
T(3/4) = 114, the set {1/4,3/4} forms a periodic orbit of order 2. It turns out that 
there is a natural invariant set under the iterates of T that lies in the interval [0,1]. 
To find it we consider successive iterations of T and keep track of the parts of the 
interval [0,1] that are mapped outside the interval by each interation. The first few 
iterations of T are illustrated in Fig. 8 and are described below. If x is in the open 
interval (1/3,2/3), T(x) > 1, and thus T maps this open interval out of the interval 
[0,1]. The two intervals Ji = [O, 1/31 and J2 = [2/3,1] are each mapped onto [O, 11. 
Thus, Ji U J2 consists of all points remaining in the interval [0,1] after one iteration. 
What points of Jl remain in [0,1] after the second iteration? The middle third of J l ,  
namely (1 19,219) is mapped out of the interval [O, 11 by the second iteration of T ,  and 
the two subintervals JH = [O, 1/91 and Jn = [2/9, 1/31 make up the points of J l  that 
remain in [O, 11 after two iterations of T. Similarly, the middle third of J2,  (7/9,8/9), 
is mapped out of [0,1] by T2, and the two subintervals of J2,  Ja = [2/3,7/9] and 
J 2 2  = [8/9, 11, make up the points of J2 that remain in [0,1] under T ~ .  Continuing this 
analysis, we find that the points of [0,1] that remain in [0,1] after n iterations of T 
consist of 2" intervals. Moreover, they are precisely the same 2" intervals that appear 
in the construction of Cantor's famous middle-third set. Thus, Cantor's middle-third 
set, call it M ,  is invariant under T, and if x # M,  then for some k ,  T ~ ( x )  is not in 
[0,1]. Thus, if x # M ,  Tn(x) + -a. The Cantor set is a repellent invariant set of T ,  
and this map is also topologically mixing on M .  

Hausdorff Measure and Dimension. If we think of T as an analog of a dynarnical 
system whose motion in phase space is restricted to a Cantor set we might like to 
find a natural measure on this set. Our problem is: Which one of the many possible 
invariant measures is useful? One clue for determining the appropriate measure for 
the N-body problem was the fact that the phase space is a manifold and we therefore 
know the dimension of the space. We could then use the corresponding volume in the 
Euclidean space of that dimension to guide us to the correct measure. But what do we 
do with the Cantor set of our example? What is its dimension? In the early part of 
this century Felix Hausdorff developed an approach for determining the dimension of 
a general metric space (a space with a notion of a metric, or distance, between points) 
in terms of measures associated with the metric. It is perhaps surprising at first that the 
dimension of a space may not be an integer. Such spaces have been christened fractals 
by Mandelbrot, and he has provided many examples of their occurrence in physical 
phenomena. The idea behind Hausdorff's generalization of dimension is very simple 
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An invariant set for the transfer- 
matlon defined in Fig. 7 eonÃ§ist at all the 
closed subintervals of [0,1] that are not 
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and is based on the idea of self-similarity or scaling. 
Let's take the simplest example, the unit square. We could say that the dimension 

of the unit square is 2 for the following reason. Consider any scaling transformation 
f (x) = Ax, where x is a point in the plane. The transformation f is called a similarity 
map of the plane and the image of the unit square under f will be a square whose area 
is A2. The power to which we raise the scaling exponent to obtain the measure of the 
image set is the dimension of the original set. Exactly the same reasoning shows that 
the unit cube in Euclidean n space has dimension n. 

The generalization to more complicated metric spaces is straightforward. Consider 
a general metric space X. A map f is a similarity map of a subset E of X if the distance 
between points in E scale by a factor r under the action of the map. In other words 
there is a number r such that for all x and y in E ,  dist(f(x), f (y)) = r dist(x,y). 
Hausdorff defined for each number f3 > 0 a measure H {3 on X that obeys the scaling 
law of Hausdorff measures. 
Scaling law of Hausdorff measures: If E c X and f is a similarity map of E onto 
f (E) with similarity ratio r ,  then H V ( E ) )  = ~ W ( E ) .  

While the measures H 0  are defined on the metric space for all values of Q > 0, 
Hausdorff showed that there is one and only one measure H a  for which a "jump" 
occurs. He called a the dimension of the metric space. 
Hausdorff dimension theorem: For each metric space X, there is a number a such 
that if Q < a,  then H ~ ( x )  = oo and if a < 0 ,  then H^(x) = 0. The number a is 
called the Hausdorff dimension of X. 

How do Hausdorff's definitions of measure and dimension compare with our 
ordinary notions in Euclidean space? It turns out that the Hausdorff dimension of 
n-dimensional Euclidean space is n (which it should be, of course) and the associated 
Hausdorff measure H n  is the same as our usual definition of volume element. Thus, 
H a  is a natural generalization to a space of dimension a of our ordinary notions of 
measure, or volume element, in Euclidean space. Once the Hausdorff dimension a of 
a space is known, we have a natural measure on the space, namely H a .  So the first 
problem is to determine the dimension of the space under consideration. 

Hausdorff Dimension of Cantor's Middle-Third Set. As an example, we will show 
that the self-similarity properties of the middle-third Cantor set C define its Hausdorff 
dimension as log 2/ log 3. (In fact, Hausdorff proved this in his original paper.) 

Consider the two similarity maps fl(x) = x /3  and f2(x) = x /3  + 213. Then 
fl(C) = C n [O, 1/31 and f2(C) = C r l  [2/3,1]. So C = fl(C) U f2(C). Since fi(C) and 
fi(C) are disjoint and H a  is a measure, 

By the scaling law, H"(/~(C)) = (l/3)"H0(C) and H"(^(c)) = (1/3)"Ha(C). 
Therefore 

Ha(C)  = (l/3)"Ha(C) + (1/3)"H "(C) = (2/3")Ha(C). 

Cancelling H w), we have 
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We conclude that the Hausdorff dimension of C is log 21 log 3. Of course, this is only 
a heuristic argument (because we cannot cancel Hff(C) unless H a ( C )  is positive and 
finite), but it can be justified. 

Returning to our example T(x) = (3/2)(1 - \2x - I[), we have shown that the 
invariant set M is Cantor's middle-third set and that the Hausdorff dimension of M is 
a = log 21 log 3. In fact p = H ", Hausdorff's volume element in dimension a, is an 
invariant measure on M . 

Our analysis of this example is typical of the analyses of many discrete dynarn- 
ical systems. We found an invariant set M that is constructed by an algorithm that 
analyzes the behavior of points near M.  The first application of the algorithm yields 
nonoverlapping closed regions Jl, . . . , Jn the second yields nonoverlapping subregions 

Ji . . . , Jin in each J i ,  and so forth. Finally, the invariant set M is realized as 

In this example the construction is self-similiar; that is, there are scaling ratios 
tl ,  . . . , tn such that a region at iteration k, Jil... ik and a subregion at level k + 1, Ji ,... ik+, , 
are geometrically similar with ratio ti,, . (In our example ti = ti = 113.) When such 
similarity ratios exist, one can use a fundamental formula due to P. A. P. Moran for 
calculating the Hausdorff dimension of the invariant set. 

Theorem: If M = flzl (uiSn Jil.,, ik), then dim(M) = a, where a is the solution of 
t ? + . . - + t E  = 1. Moreover, 0 < Hff(M) < +oo. 

That is, a is the Hausdorff dimension of M ,  and H a  is a well-defined finite measure 
on M.  

Random Cantor Sets. One of my current interests centers on analyzing the invariant 
sets obtained when the dynarnical system experiences some sort of random perturba- 
tion. The perturbation introduces a perturbation in the algorithm used to construct the 
invariant set. Thus we randomize the algorithm, and the scaling ratios ti, t2, . . . , t,,, 
instead of having fixed or deterministic values as before, are now random variables that 
have a certain probability distribution. One theorem of Williams and mine (Mauldin 
and Williams 1986) is that the Hausdorff dimension of the final "perturbed" set M is, 
with probability 1, the solution of 

where E (t? + t? +. - -) is the expected value of the sum of the ath powers of the scaling 
ratios. Note that this formula reduces to Moran's formula in the deterministic case. 

As an example suppose our randomly perturbed system produces Cantor subsets 
of [0,1] as follows. First, choose x at random according to the uniform distribution on 
[0,1]. Then between x and 1 choose y at random according to the uniform distribution 
on [x, 11. We obtain two intervals Jl = [0,x] and J2 = [y, 11. Now in each of these 
intervals repeat the same procedure (independently in each interval). We obtain two 
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THE GOLDEN MEAN 

Fig. 9. (a) Consider a rectangle with sides 
of length A and B, A < B. Let r denote 
the ratio of A to B. Divide this rectangle 
into a square of side A and a new rectan- 
gle. If the ratio of the lengths of the sides of 
the new rectangle, (B - A)/A, also equals 
r, then both the original rectangle and the 
new rectangle are golden rectangles and r 
is equal to the golden mean m. (The nu- 
merical value of m, (& - 1)/2, is obtained 
by solving the two simultaneous equations 
r = A/ B and r = (B - A)/A.) (b) The process 
of dividing a golden rectangle into a square 
and a new golden rectangle can, of course, 
be continued indefinitely. It can be shown 
that the logarithmic spiral given in polar co- 
ordinates by log p = m0 passes through 
two opposite vertices of each successively 
smaller square. This fact may help explain 
why the Hausdorff dimension of the random 
Cantor sets described in the text is equal to 
the golden mean. 

subintervals of Ji, Jll and J iz ,  and two subintervals of J2,  J21 and 722. Continue this 
process. We will obtain a random Cantor set, and its Hausdorff dimension a is, with 
probability 1, the solution of E (tr + t̂ \ = 1, or 

A little calculus shows that 

V^- 1 a=-  
2 

, the golden mean! 

A problem left for the reader: Why should the golden mean (Fig. 9) arise as the 
dimension of these randomly constructed Cantor sets? 

Problem 3. Computer Experiments and Random Homeomorphisms 

One topic Stan and I discussed several times was whether one could "randomize" 
dynamical systems in some way. Is it possible to define a probability measure on 
a wide class of dynamical systems such that meaningful statements could be made, 
for instance, about the probability that a system would become turbulent or about the 
expected time to the "onset of chaos"? To get started on this very ambitious problem, 
we discussed how we would go about generating homeomorphisms at random. For 
simplicity, let us generate homeomorphisms of the unit interval [0,1] onto itself. Thus, 
we wish to build continuous, strictly increasing maps h with h(0) = 0 and h(1) = 1. 
One algorithm for doing this randomly follows. 

Set h(0) = 0 and h(1) = 1. Choose h(1/2) according to the uniform distribution on 
[0,1]. Continue by choosing h(l/4) and h(3/4) according to the uniform distribution 
on [O, 1/21 and [1/2,1], respectively. In general, once the values of h(i/2") have 
been determined for i = 0,1,  . . . ,2", choose h ((2i + 1)/2'^+') according to the uniform 
distribution on [h(i/2"), h(i + 1)/2"]. This simple algorithm is easily implemented on 
a computer. (It needs no more than fifty lines of FORTRAN.) If the computer's random- 
number generator is fairly good, general properties of these functions can be guessed. 
However, to show that this algorithm defines an associated probability measure P on 
1̂, the set of all homeomorphisms of [0,1] onto [0,1], is no small task. First we need 

to define a class of elementary events and the probabilities associated with them. An 
elementary event in the sample space fi comes naturally from the random algorithm. 
For a positive integer n ,  consider the dyadic grid on [0,1] given by the points 1/2", 
2/2", . . . , (2" - 1)/2". Over each grid point i 12" construct a "gate", an interval (ai, bi) 
such that a, < bi < a;+l. An elementary event consists of all elements h of fi that pass 
through all the gates: ai < h(i/2") < bi9 for i = 1,2, . . . ,2" - 1 (Fig. 10). 

The probability assigned to an elementary event is defined by induction on n.  For 
example, if n = 1, an elementary event consists of all h that pass through a single 
gate: a < h(1/2) < b. Since the random algorithm chooses h(1/2) uniformly, the 
probability assigned to this event is the length of the interval, b - a .  If n > 1, the 
probability of an elementary event is determined from the conditional probabilities 
given by the algorithm. For example, the distribution function of the random variable 
h(3/4) is P (h(3/4) <: t ) .  To calculate this distribution function, we first find the 
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conditional probability that h (314) 5 t , given that h (1 12) = s.  It follows directly from 
the construction algorithm that 

if 1 s t  
P ( h ( 3 / 4 ) 5 t \ h ( l / 2 ) = s )  = - s ) / ( l - s )  i f s  < t  < 1 

if t < s .  

= t + (1 - t) ln(1 - t). 

The distribution of h(3/4) is shown in Fig. 11. 
The exact formulas for the probabilities assigned to various elementary events are 

quite complicated. What is required is to determine that probabilities of the form 

CONSTRUCTION OF 
ELEMENTARY EVENTS 

Fig. 10. In the study of random homeomor- 
phisms described in the text, an elementary 
event is defined as the set of all homeomor- 
phisms h that pass through 2" - 1 "gates" 
consisting of open intervals (ai, bi)  over the 
grid points i / 2 "  ( i  = 1 ,  2,  . .., 2" - 1). The 
ai9s and hi's are restricted by the conditions 
a; < bi < a;+,. Shown here is one possible 
set of gates for n = 2 and a member of the 
corresponding elementary event. 

satisfy Kolmogorov's consistency theorem. We have shown that these conditions are in- 
deed satisfied and therefore a probability measure P is defined on the homeomorphisms 
of [0,1]. To see what these homeomorphisms look like, we used the computer. Figure 
12 shows a few samples from our computer studies in which the values of h(i 12") are 
computed for n = 10. 

S. Graf, S. C. Williams, and I studied this method in detail (Graf, Mauldin, and DISTRIBUTION FUNCTION 
Williams 1986). For example, we examined a large number of the computer studies FOR h(3/4)  
and guessed that with probability 1 the derivative of a random homeomorphism at the 
origin is 0. This conjecture turned out to be correct. The argument is essentially the Fig. 11. As demonstrated in the text, F(t) z 

~(h (3 /4 )  < t) equals 0 for t < 0 and 
following. First, since h is increasing and h(0) = 0, it is enough to show that equals t + (1 - t) ln(1 - t )  for t > 0. Shown 

h(\/2") - h(o) 
lim = lim 2"h(1/2") = 0. 

n 112" n + o o  

Second, set 

here is the graph of that distribution func- 
tion. 

where n = 1 ,2 ,3 , .  . . . It is intuitively clear and can be proved that Â¥", &, Qs,. . . 
are independent random variables, all uniformly distributed on [O, 11. Set Xn = In Qn. 

The Xn  's are independent and identically distributed, and E (Xn ) = f' ~ l n  t dt = - 1. 
Therefore, by the strong law of large numbers, 

LOS Alamos Science Special Issue 1987 



Probability and Nonlinear Systems 

COMPUTER-GENERATED 
RANDOM HOMEOMORPHISMS 

Fig. 12. Each of the graphs here is a random 
homeomorphism passing through a set of 
points /Ã̂( /21Â°) h(2/2I0), . . . , /~(1023/2~~). 
The sets of points were generated by a com- 
puter according to the algorithm described 
in the text. Such graphs provide experimen- 
tal data about the properties of the homeo- 
morphisms as a class. 
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Multiplying both sides by n we have, with probability 1, 

-oo= lim E X  - lirn z l n < ' ,  = lirn l n n f , .  
n- - t i - 0 0  n+m 

Exponentiating we get 

0 = lirn n X P p  = lim 2"A(1/2'), 
I I + ~  n+m 

p= l 

which is what we wanted to show. 
We have also shown that, with probability 1, a random homeomorphism has a 

derivative of 0 almost everywhere, that is, everywhere except for a subset of [0,1] with 
Lebesgue measure 0. Consequently, with probability 1, a random homeomorphism is 
not smooth. Therefore this approach will not yield answers to questions concerning the 
transition from smooth to turbulent, or chaotic, behavior. As often happened with Stan's 
problems, the original question, which was motivated by physics, would eventually 
become a purely mathematical problem. 

By the way, our original studies on an Apple computer illustrate the pitfalls of 
working with numerical results. From looking at the graphs we guessed that the set 
of fixed points for these homeomorphisms is a Cantor set. When we were unable to 
prove this conjecture, Tony Wamock conducted more highly resolved computer studies 
on a Cray. The results suggested not that the fixed points are a Cantor set but rather 
that a high proportion of the random homeomorphisms have an odd number of fixed 
points (see the accompanying table). This time we guessed that, with probability 1, a 
random homeomorphism has a finite odd number of fixed points. Indeed we were able 
to prove this; however, the proof is too complicated to outline here. 

A few closing comments on this problem. First, the procedure for generating a 
random homeomorphism can also be viewed as a procedure for generating a distribution 
function at random. Thus, we have a probability measure on the space of probability 
measures! This viewpoint was thought of and developed earlier by Dubins and Freed- 
man. Second, Stan and I did consider the generation of random homeomorphisms on 
other spaces. For example, the algorithm for generating homeomorphisms of the circle 
reads almost exactly like that for generating homeomorphisms of the interval. (How- 
ever, in that case we don't know whether there is a positive probability of generating 
homeomorphisms with no periodic points. This is an interesting possibility.) Third, 
it is possible to bootstrap oneself up from generating homeomorphisms of the interval 
to generating homeomorphisms of the square, the cube, and so on. These possibilities 
are described in Graf, Williams, and Mauldin 1986. Finally Stan had some wild ideas 
about "crossing" random homeomorphisms with something like Brownian motion to 
produce flows at random. 

That wildness was the joy of being with Stan Ulam. His boundless imagination 
opened up one's mind to the endless possibilities of creating. It was my good fortune 
to have known Stan for some ten years as a deep personal friend, a most stimulating 
collaborator, and an endless source of inspiration. rn 

FIXED POINTS OF RANDOM 
HOMEOMORPHISMS 

Listed here are computer-generated sets of 
data on the number of fixed points pos- 
sessed by each of (a) 5000 and (b) 10,000 
of the random homeomorphisms (h's) de- 
fined in the text. Note the predominance 
of homeomorphisms with odd numbers of 
fixed points. That observation led us to con- 
jecture, and to prove, that, with probability 
1, any such random homeomorphism has a 
finite odd number of fixed points. 

Number k of Number of h's 

Fixed Points with k Fixed Points 
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NUMBER THEORY ' -  + 

ULAMIAN 
POTPOURRI 
by Paul R. Stein 

I 
first met Stan Ulam during the war, when I was at Los Alamos as a GI, working 

in Hans Bethe's Theoretical Division. Our friendship was social rather than 
professional, for at that time I had little to contribute. I returned to Los Alarnos in 
1950 and was immediately caught up in the weapons program, spending much of 

my time in the East helping to run problems on computers in Washington, Philadelphia, 
and Aberdeen. What time remained was spent in Santa Monica consulting with the 
Rand Corporation-and courting my future wife. Fortunately, in 1953 I managed to 
get married, and that, of course, settled me down. The next six years witnessed my 
gradual conversion, under Stan's tutelage, from physicist to mathematician. 

Our collaboration started in a low key. At first it was limited to discussions-rather 
one-sided, as I recall. I listened as Stan aired his prejudices concerning mathematical 
biology as it then was (circa 1955): "It is all foolishness, don't you think?" I was in 
no position to counter these remarks, and soon he had me more or less believing them. 
One argument he advanced more than once (and which I no longer believe) was about 
the human eye. Stan could not imagine that something so complex could have evolved 
by random processes in the time available, even granting the effect of natural selection. 
Neither of us, however, could think of a practicable calculation to settle the question, 
so we turned to simpler matters. 

The first mathematical problem we undertook together, with the aid of an IBM 704 
computer, concerned the evolution of large populations under the assumption of random 
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mating, to which we added the effect of mutation. (This description of the problem may 
tempt the reader to interpret what follows in terms of Mendelian genetics. That topic, 
however, had already been treated mathematically in great detail, and our interest lay 
rather in investigating mathematical and computational approaches to other examples of 
evolutionary processes.) Stan made it very clear that he wanted nothing to do with the 
customary approach via differential equations (a la Sewall Wright); instead, everything 
was to be based on point-wise iteration. I heartily agreed. 

We characterized the "type" of an individual in the population by a pair of integer 
indices (i , j), with i ,  j = 1,2, .  . . , N. The number of males of type (i , j) was assumed 
to equal the number of females of that type; in fact, males and females were not 
distinguished, so, despite the use of the word "mating," the problem involved no sex 
(and none of the mathematical complications that go with it). The fraction of individuals 
of type (i , j )  in the nth generation of the population was denoted by x? = x p .  Random 
mating then changes the population fractions from generation to generation according 
to the equation 

The summation in Eq. 1 was carried out under the restrictions of a "mating rule," 
namely, that progeny of type (i, j )  result from mating between individuals of type (p, q) 
and (r , s)  only if 

and 

(Here min(u, v) and max(u, v )  mean, respectively, the smaller and the larger of the two 
integers u and v.) In other words, the indices of an offspring fall within the ranges 
defined by those of its parents. 

For technical reasons that I will not pursue here, we imposed simplifying conditions 
on the coefficients 7;" as follows: 

and 

$' =$" > 0 if min(u,v) < k < max(u,v), 

= 0 otherwise (in conformance with the mating rule); 

Finally, we normalized the initial population fractions x(0) by requiring that 
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It is easy to show that the normalization is preserved through all generations, or in 
other words that 

N 

To include mutation we modified Eq. 1 by adding linear terms multiplied by a 
small positive number e: 

(The added terms reflect the assumption that mutation causes type (u, v) to give rise to 
types (u + 1, v) and ( u ,  v + 1) with probability -6 . )  

We performed very many numerical experiments on the systems represented by 
Eq. 7, varying e and using special sets of coefficients satisfying Eqs. 3, 4, and 5. Two 
particularly convenient coefficient sets were 

(where the term in parentheses is the usual binomial coefficient) and 

Unfortunately, the detailed results of these experiments have disappeared over the 
thirty or so years since the computations were done. I seem to recall, however, that 
all the systems we looked at "converged; in fact, after a sufficiently large number of 
generations, only a single type remained (survival of the fittest?). I also remember that 
the convergence was not usually monotone. 

Although nothing of a detailed theoretical nature was discovered about the systems 
including mutation, the simpler systems without mutation (Eq. 1) could be analyzed 
exactly by elementary methods, even when individuals were distinguished by many 
indices rather than only two. In brief, each system, as defined by a set of initial 
population fractions, converged to a state determined entirely by that set. (Details of 
the analysis are given in Menzel, Stein, and Ulam 1959 and in Stein and Ulam 1964.) 

Our next joint project was undertaken with more mathematical aims in view, 
although Stan never lost his strong interest in biology. (A good summary of Stan's 
contributions to that field can be found in a 1985 article by Beyer, Sellers, and 
Waterman. The reader should take note of the 1967 paper by Schrandt and Ularn. 
The study of growth patterns contained therein bears a close resemblance to some 
recent work on cellular automata.) After extensive discussion, we decided to study the 
behavior under iteration of a restricted class of quadratic transformations, or maps, of 
the plane. The idea was mainly Stan's, but I managed to contribute some practical 
suggestions. 

At this point is seems appropriate to explain what it meant to collaborate with 
Stan. At some stage in his mathematical career, he apparently lost his taste for detailed 
mathematical work. Of course, his mind was always brimmming with ideas, most 
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DOMAIN OF TWO-DIMENSIONAL 
MAPS 

Fig. 1. The restrictions 0 < xi < 1 (/ = 
1,2,3) and x. xi = 1 limit the domain of the 
xi's, and of the iterates of the two-dimensional 
quadratic and cubic maps discussed in the 
text, to the equilateral triangle shown in (a). 
For more convenient graphic display of the 
iterates, we introduced the variables S = -(I + 
x, - x3) and a = 5x2 = :(1 - xi - x3). These 
new variables, and the iterates of the maps, 
are limited (by the restrictions on the xi's) to 
the isosceles triangle shown in (b). 

of them good; it was the collaborator's job to fill in the details. Stan was often of 
great help here with suggestions on how to evade difficulties, but he himself would 
not work out anything that required more than a few lines of calculation. In the late 
1940s C. J. Everett and Stan wrote three brilliant papers on branching processes in n 
dimensions-a technical tour de force. I recently asked Everett how he and Stan had 
worked together on those papers. Everett's reply was succinct: "Ularn told me what to 
do, and I did it." In my case collaboration with Stan usually involved a third person. 
I had given up programming after having had my fill of it during the first three years 
at Los Alamos. (In the last four years I have had to take it up again.) Among those 
who did my coding from time to time were Bob Bivins, Cerda Evans, Vema Gardiner, 
Mary Menzel, Dorothy Williamson, and in particular Myron Stein, who collaborated 
with me for many years until the pressure of his own work made it impossible. 

The study Stan and I made of quadratic transformations used the programming 
skills of Mary Menzel; the results appeared in 1959 as "Quadratic Transformations, 
Part I"-there never was a Part 11-under all three names. The computations were 
done on the Laboratory's own computer, MANIAC I1 (now defunct). In the following 
section I will describe that study in some detail; it will then be unnecessary to say 
much about the mechanical aspects of our later (and more exciting) generalization to 
cubic maps, since the underlying assumptions were the same. 

Quadratic Transformations a la Stein-Ulam 
Consider three variables XI,  x2, and x3 restricted as follows: 

and 
A 

X l  +X2 +x3 = 1. 
1 1  

(8) 
2 '  2) 

These restrictions limit the variables to the two-dimensional domain shown in Fig. la. 
a If we multiply out (x, +x2 + x ^ ) ~ ,  we get the six terms xf ,  x;, x:, a x 2 ,  h1x3 ,  and 

22x3. We distribute these six terms among three nonidentical boxes, no box remaining 
empty. (The boxes correspond to the transformed variables xi,  xi, and xi.) This 
distribution can be done in many ways, in fact, in 540 ways. (The distribution (4,1,1), 
that is, the distribution such that the first box contains four terms and the second and 

7 0) s third boxes each contain one term, can be done in thirty ways, as can the distributions 
(1,4,1) and (1,1,4); the distributions (3,2,1), (3,1,2), (1,3,2), (1,2,3), (2,1,3), and (2,3,1) 
each in sixty ways; and the distribution (2,2,2) in ninety.) Let us choose the distribution 
(3,2,1) to construct an example of a quadratic map. We take three terms, say xf ,  2x1x2, 
and 22x3, and form their sum; then we sum two other terms, say x i  and x:, leaving 
the term to stand alone. The corresponding map is given by the equations 

Iteration is carried out by setting xi equal to x (the first iterate) and substituting the 
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new xi's back into the right side of Eq. 9 ad infiniturn. 
Biology has not quite disappeared from the problem. If the xi's are interpreted 

as population fractions, Eq. 9 represents the evolution of a population containing three 
types of individuals randomly mating according to the following rule: 

mating between types 1 and 1, 1 and 2, and 2 and 3 produces type 1 ; 
mating between types 2 and 2 and 3 and 3 produces type 2; 
and mating between types 1 and 3 produces type 3. 

One could also write this rule as a table or a matrix, forms that are more revealing of 
the algebraic and group properties of the transformation. 

Note that if we add up the three rows of Eq. 9, we get x{ +xi +xi = (xl +xi + x ~ ) ~ ,  
which equals unity because of Eq. 8. Thus the normalization is preserved algebraically. 
Nevertheless, in carrying out the iterations on MANIAC I1 we found that D,  the sum of 
the computed xps, could be slightly different from unity because of roundoff. Therefore 
it was necessary to renormalize after each iteration as follows: x[jD + x for all i. 

The "fixed points" of a transformation (more precisely the "first-order fixed points") 
are points that remain unchanged under iteration; they are solutions to the equations 
obtained by removing the primes on the equations defining the transformation. The fixed 
points for the map given by Eq. 9 are easily determined. First note that XT, = 2x1~3 
(obtained from the third row of Eq. 9) implies that x3 = 0 or XI = i. These possibilities, 
together with XI = x; + 1x\x-i + 2x2~3 (obtained from the first row of Eq. 9) and the 
restriction XI +x-) +x3 = 1, lead to two "nodal" fixed points, (1,0,0) and (0,1,0), and one 
"internal" fixed point, (i , (2 - d), A). 

How does the map given by Eq. 9 behave under iteration? Experimentally, if we 
choose an initial point (xi ,x-),x3) at random, it is highly probable that the successive 
iterates will converge to the map's internal fixed point. For some initial points, including 
those such that x3 = 0 and xl #O, the iterates converge to the nodal fixed point (1,0,0). 
(The other nodal fixed point is nonattractive: iterates diverge from (0,1,0) no matter 
how close to that point an initial point may be.) So this map has two attractive limit 
sets, or attractors, each characterized by its "basin of attraction" (the set of initial points 
that iterate to the attractor). 

As mentioned above, there are many more maps of the present kind, which we 
called binary reaction systems. Fortunately, we needed to examine only those that 
are inequivalent, that is, those that cannot be transformed into each other by some 
permutation of the indices on the xi's and the x,"s (the order of the rows clearly does 
not matter). It turns out that precisely 97 of the possible 540 maps are inequivalent 
according to this criterion. The fixed points of all the inequivalent maps were worked 
out by hand (Stan himself verified some of those calculations), and their limiting 
behavior under iteration from several randomly chosen initial points was examined 
numerically. The latter was a very slow process in 1958: MANIAC I1 could perform 
only about fifty such iterations per second. Of course, MANIAC I1 was a stand-alone 
"dedicated" machine, and that helped make up for its lack of speed. 

For more convenient graphic display of the results, we arbitrarily introduced two 
new variables 

DEPENDENCE OF LIMIT SET ON 
INITIAL POINT OF ITERATION 

Fig. 2. A few of our two-dimensional quadratic 
maps exhibited one of two limiting behaviors 
under iteration, depending on the location of 
the initial point. For example, the map defined 
by the equations below (in both xi and S, a 

coordinates) iterates to an internal fixed point 
(s = 0.62448516, a. = 0.09239627) from any 
initial point within the dark gray region of the 
reference triangle and to a nodal period of or- 
der 3 ((0,O) + (-, ;) + (1,0)) from any initial 
point within any of the three light gray regions. 
The "separatrix" demarcating the basins of at- 
traction of the two limit sets was determined 
experimentally. 
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THREE-DIMENSIONAL QUADRATIC 
MAPS WITH INFINITE LIMIT SETS 

Fig. 3. The limit sets of a small fraction of 
our quadratic transformations in four variables 
contain what appear to be infinite numbers of 
points. Shown below are three-dimensional 
projections of four such limit sets, which were 
obtained by photographing plots of succes- 
sive iterates on an oscilloscope screen. The 

set of axes in the center of each display indi- 
cates the orientation of the limit set relative to 
the viewer, who is conceived of as stationed 
at a certain distance from the origin along the 
x* axis. The limit set for Ta consists of two 
"curves," one in the x1 , x3 plane and the other 
in a plane inclined at 45" to the x1 , x3 plane. 
Ta evidently transforms these planes into each 
other, since successive iterates lie alternately 
on the two curves. The limit sets for Ti,, T,., 
and Td are even more complicated, constitut- 
ing implausibly tortuous curves in space. 

The domain of these new variables is an isosceles triangle in the S ,  a plane, with unit 
base and half-unit height (Fig. lb). Note that the vertices of this "reference triangle" 
correspond to the nodal points of the original domain. 

What we found was less than overwhelming. One transformation had an internal 
periodic limit set of order 3 (that is, its limit set consisted of three internal points 
traversed in a certain order), four had internal periods of order 2, one showed no 
limiting behavior at all, and one converged to an internal fixed point as 1, where r is the 
distance of the iterate from the fixed point. In addition, a few maps had a "separatrixyy 
(Fig. 2); that is, they showed one of two limiting behaviors (usually convergence to 
a fixed point or to a periodic limit set of order 2) depending on the location of the 
initial point. Everything else converged to a fixed point (not necessarily internal) or 
had nodal periods of order 2 or 3. The interested reader will find a description of the 
many generalizations we tried in Menzel, Stein, and Ulam 1959. 

Cubic Maps and Chaos 

Although some interesting facts emerged from the study described above, Stan and 
I were disappointed at the lack of variety in the limiting behavior we observed. We 
even tried to enliven the situation by generalizing the generic map to the form 

with the coefficients randomly chosen but restricted by 0 < dij <. 1 for all i ,  j and 
~3 d i  = 1. Of several hundred such systems investigated, almost all iterated to a 

fixed point; in other words, the special quadratic maps we had originally looked at were 
more interesting than the general case. 

What to do? Stan and I had, simultaneously, the idea of looking at three-variable 
cubic maps of the same structure as our quadratics. That is, we would distribute the 
ten terms arising from expansion of (xi +x^ + x ^ ) ~  among three boxes and construct the 
maps in the same way as before. A short calculation (see pp. 7-8 of Stein and Ulam 
1964) showed that there were more than 9330 inequivalent maps of this type. (The 
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4 Fig. 4. Shown in (a) is one of two possi- 
ble limiting behaviors for the map defined by 

the given equations, namely, convergence to 
a "mess," an apparently infinite number of 

points with a complex distribution and no dis- 
cernible structure. The map iterates to this 
messy limit set from any initial point within 

any of the light gray regions in (b). If, how- 
ever, the initial point lies within any of the 
dark gray regions, the map iterates to the fixed 

point & = 0.6259977, a0 = 0.1107896. The 
complicated separatrix was determined exper- 

imentally. 

exact number turned out to be 9370, arrived at by a more complicated combinatorial 
calculation.) Perhaps among this plethora of possibilities we would find some systems 
that showed truly unexpected limiting behavior. I am happy to say that the results far 
exceeded our expectations. 

We also considered transformation in three dimensions, specifically quadratics in 
four variables with XI + XT + XXT, + x4 = 1. But 34,337 of these are inequivalent (not an 
easy fact to come by), so we were never able to give them the attention they deserved. 
(Figure 3 gives a glimpse of some interesting cases.) Unless someone writes a fast 
program to evaluate automatically the amusement value of limit sets, that is as far as 
such studies will ever go: the case that comes next (when ranked by the number of 
inequivalent maps) is that of quartics in three variables, and more than 3,275,101 of 
these are inequivalent (the exact number is unknown). 

Returning to our study of cubic maps, we plotted the sets of points obtained 
by iteration on an oscilloscope screen in the reference triangle of Fig. lb. "Hard 
copy" was obtained directly from the screen with a Polaroid camera mounted on the 
oscilloscope. This method, in addition to being cheaper, was more convenient than the 
current method, which involves a $20,000 Tektronix terminal with a hard-copy device. 

There is not enough space to give all the details of what we found; an extensive 
summary is given in Stein and Ulam 1964, and Figs. 4-7 show some interesting 

Fig. 5. The two-dimensional cubic map defined 

by the given equations iterates to an infinite 
limit set composing the closed curve shown in 
(a). (Whether the words "infinite" and "curve" 
can be applied here in the strict mathematical 

sense is not known.) When this map is iter- 
ated from some point p in the limit set, suc- 
cessive iterates do not trace out the curve in 
an orderly fashion. However, the 71st, 142nd, 

213th, . . . , (71 n)th, . . . iterates of p, which are 
plotted in (b), do lie close to each other and 

trace out the curve in a clockwise direction. 
Various stages in the iteration of this map are 
featured in the art work on the opening page of 

the article. The first image (counted from back- 
ground to foreground) shows the set of points 
at which the iterations were begun, namely 

twenty-one points uniformly distributed along 
a line segment whose midpoint i s  coincident 

with the nonattractive fixed point of the trans- 
formation. (The horizontal and vertical coor- 
dinates of this fixed point are approximately 

0.6149 and 0.1944, respectively.) The second 
and third images, which are superpositions 

of the 8th through 15th and the 15th through 
22nd sets of iterates, respectively, capture the 
dynamics of these early iterations. The final 

image, a superposition of the 1800th through 

2700th sets of iterates (and the same as that 
in (a) here), shows the stable pattern to which 

the sets of iterates converge. 
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TWO AMUSING INFINITE LIMIT SETS 

Fig. 6. Examples of two-dimensional cubic 
maps with infinite limit sets constituting (a) 

a more irregular closed curve than that illus- 

trated in Fig. 5 and (b) three separate closed 
curves. 

A PARTICULARLY FASCINATING 
INFINITE LIMIT SET 

Fig. 7. The infinite limit set of the two-dimen- 
sional cubic map defined here consists of 
seven separate subsets. Each subset is in- 

variant under the seventh power of the trans- 
formation; that is, if p is a point in any one of 
the subsets, the 7th, 14th, 21st, ,... (7n)th, ... 
iterates of p are also in that subset. Shown 

magnified in the inset are the 7th, 14th, 21st, 
..., 2695th iterates of a point in the outlined 
subset of the limit set. 

examples of limiting behavior. Again, a large majority of the transformations converged 
to fixed points or to periodic limit sets (some of quite high order). Of most interest 
to us, however, were 334 transformations that exhibited no periodic limiting behavior, 
suggesting that their limit sets contained infinite numbers of points. Some of these 
appeared to be closed curves or sets of closed curves, although to this day not one 
has been shown to satisfy the mathematical criteria for a curve. Others bore a striking 
resemblance to the night sky; at the time these strange limit sets were commonly 
referred to as messes. 

The transformation that iterated to the mess shown in Fig. 8 was studied in great 
detail and received the special name TA. For the record I give its definition here, both 
in xi and S , a coordinates. 

and 
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Tn has an unstable (nonattractive) internal fixed point; its approximate coordinates are 
So = 0.5885696 and a 0  = 0.1388662. Some twenty years after the appearance of 
our paper, TA was examined on a Cray computer by Erica Jen. The results strongly 
suggested that its limit set is what is today called a strange attractor, with a fractal 
(noninteger) dimension of about 1.7. The term "strange attractor" was coined by Ruelle 
and Takens in 1971 in the course of a study of turbulence. Strange attractors are now 
known to arise often during iteration of the nonlinear differential or difference equations 
used to describe phenomena in, for example, meteorology and fluid dynamics. 

Several other messes have been classified as strange attractors by present-day 
criteria, the main one being sensitive dependence on initial conditions. That is, a limit 
set is a strange attractor if any two points within the set, no matter how close, move 
farther and farther apart under the action of the mapping. If the limit set is bounded 
away from infinity (as it is here), the points cannot keep moving apart, and the criterion 
then is that the relative positions of the limit points become uncorrelated-a feature 
of chaos. Unfortunately, no numerical experiment can prove that some limit set is a 
strange attractor. For example, what appears to be a strange attractor may actually be 
a periodic limit set of very high order. To my knowledge, rigorous measures of the 
likelihood that a computer-generated limit set is a strange attractor have not yet been 
developed. 

Having said that, I shall pretend that some of our cubic maps do illustrate strange 
attractors. How can those maps be studied farther? One way is to introduce another 
variable 6 (0 < 6 < 1). Letting S f  = F (S , a )  and a' = G(S , a )  denote the defining 
equations of the map (cf. Eq. 1 lb), we write a new set of equations as follows: 

Note that 8 = 1 corresponds to the original map. (If 6 = 0, Eq. 12 reduces to the 
identity transformation.) So long as 6 lies in the given range, the first-order fixed 
points are independent of this parameter. The original system may have a nonattractive 
fixed point; it cannot, of course, be found by iteration. If, however, the fixed point 
can be made attractive by decreasing 6 (from unity), then iteration can be used, thus 
avoiding some messy algebra. In fact, a sufficient decrease in 6 will-in almost all 
cases-decrease the absolute value of both eigenvalues of the Jacobian matrix of Eq. 12 
to less than unity at the fixed point, which is precisely the criterion for the attractive 

THE INFINITE LIMIT SET OF 
Ti-A "MESS" 

Fig. 8. The transformation TA (see text for 
defining equations) is one of our two-dimen- 
sional cubic maps that iterates to a mess. 
Shown in (a) is its messy limit set; its nonat- 
tractive fixed point has been superimposed on 
the photograph. The magnifications in (b) and 
(c) reveal ever greater complexities. 
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EFFECT OF 6 ON THE LIMIT SET 

Fig. 9. Our two-dimensional cubic maps can 
be generalized by introducing the parameter 6 
as described in the text. Shown here is the 
effect of varying this parameter on the messy 
limit set of TA (see Fig. 8). As 6 is decreased 
from unity, the limit points at first coalesce into 
seven distinct bunches, forming what we call a I 
pseudo-period. (a) Then at 6 Ã 0.9930, the in- 
finite limit set becomes periodic (and hence fi- 
nite), with an order of 7. (b) This configuration 
persists over a range of 6 values, although the 
coordinates of the limit points vary. (c) Then 
at 6 Ã 0.9770, the periodic limit set changes 
into a closed curve. (d) As 6 is decreased fur- 
ther, the curve becomes smaller and smaller, character of such a point. This is the fact that motivated the introduction of 6, but 

Finally, at 6 s= 0.9180, the curve collapses to the effect of its variation turned out to be much more interesting than we expected. 
a single point, the nonattractive fixed point of Decreasing 6 may cause a remarkable change in the appearance of a messy limit set 
the original transformation (6 = 1). (Fig. 9). Points may start to cohere, forming a pattern of disjoint arcs. Further decrease 

of 6 may lead to a periodic limit set of finite order, which persists over a range of 6 
values. As 6 approaches the value at which the limit set collapses to the fixed point, the 
set may metamorphose into a closed curve (at least something that looks like a curve) 
that shrinks continuously with 6. This behavior is typical; even more complex changes 
have been observed in some cases (Fig. 10). 

Another way to study cubic maps with messes as their limit sets is to vary the 
coefficients. This is done just as it was for the quadratic maps, but the results are far 
more dramatic. Figure 11 shows a few examples of the fascinating behavior that has 
been observed. Here the coefficients constitute a twenty-parameter set, so exploration 
of all possibilities is not feasible; the usual practice is to vary the coefficients of one 
or two terms at a time. Much numerical work of that type was done at the Laboratory 
in 1984 and 1985 on a Cray computer, and many new strange attractors turned up. 
The aim of this work is to find some "structural" (geometric or algebraic) principle 
underlying the relatively bizarre phenomena our computer screens reveal. 

One-Dimensional Maps and Universality 

The first part of this section is a historical note on the origins of a 1973 paper 
by Metropolis, Stein, and Stein. The paper dealt with a certain universal structure and 
hierarchy of the periodic limit sets that can arise in the iteration of one-dimensional 
maps; it has been cited by Mitchell Feigenbaum as a source of inspiration for his later 
work on the universal nature of the approach to chaos by "period doubling." 

The origins of our paper lie in the work discussed above by Stan and me on cubic 
maps. We had found fifteen or sixteen that had the property of transforming a pair of 
sides of the S a reference triangle into each other. It is clear that the "square" of such 
a map (the second iterate) transforms one side of the triangle into itself, and the map 
is therefore one-dimensional. We rewrote some of these as maps defined on the unit 
interval and iterated them on MANIAC 11. In every case we obtained a periodic limit 
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set of high order (1500 or thereabout). We had reasons for thinking that these results 
were spurious, caused by the limited precision of the machine, and that what we were 
seeing were artifacts. Indeed, when we iterated the two simpler maps 

x ' =  4x(l - x), 0 < x < 1 

and 

we also found high-order periods. For these maps, however, it was easy to prove that 
no such limit sets could exist, so our suspicions were confirmed. A year or two later 
the IBM 7030 ("Stretch") became available. With its larger word size, it failed to 
reproduce our impossible periods. 

In 1970 Nick Metropolis and Myron Stein joined me in an attempt to find out 
what was really going on in all these one-dimensional examples. Of course, we could 
not resist generalizing the problem slightly by introducing a parameter A, essentially 
the height of the map in a plot of x' versus x. For instance, instead of Eqs. 13a and 
13b we wrote 

x'=\x(l-x), 0 < x < l a n d 3 < A < 4  

and 

The restrictions on A insure that the iterates of the maps lie within the specified x 
interval and that the nonzero first-order fixed points of the maps are nonattractive. 
(Equation 14a, the "parameterized parabola," is well known in ecology as the logistic 
equation. It is a transform of a quadratic map studied in the early sixties by the Finnish 
mathematician P. Myrberg. Had we been aware of his study, considerable time would 
have been saved.) 

Equations 14a and 14b are examples of maps of the general form 

where f (x) is defined on the interval [0,1] and has a single maximum (at which 
dxf/dx = 0). For simplicity we placed the maximum at x = \ and at first restricted 
ourselves to functions symmetric about that point. This restriction does not affect the 
results presented in the "MSS" paper (a name due to Derrida, Gervois, and Pomeau). 
We also required f (x) to be strictly concave; relaxing this requirement can have drastic 
effects, as we learned later. 

ANOTHER EXAMPLE OF THE 
EFFECT OF 6 ON A MESSY LIMIT SET 

Fig. 10. An even more striking example of the 

effect of varying 6 on a messy limit set. (a) 
The limit set for the original two-dimensional 
cubic map (6=1) consists of three separate 
pieces. Photographs (c) through (g) focus on 
the changes that occur in the piece shown 
in greater detail in (b); similar changes occur 
in the other two pieces. As 6 is decreased 
monotonically from unity, the limit points (c) 
consolidate, (d) form a set of disjoint arcs, (e) 
disperse, (f) collapse to a periodic limit set 
of order 26, and (g) form a closed curve that 
eventually collapses to a single point. 

Los Alamos Science Special Issue 1987 



An Ulamian Potpourri 

EFFECT OF COEFFICIENTS ON THE 
LIMIT SET OF Ta 

Fig. 11. Our two-dimensional cubic maps can 
also be generalized by varying the coefficients. 
In the examples above the transformation TA 
was modified by varying only two coefficients. 
The photographs show the dramatic effect of 
such modifications on the messy limit set of TA 
(Fig. 8). The modification given in (a) changes 
the mess into a seven-member set of closed 
curves, one of which is shown in detail. The 
very similar modification given in (b) changes 
the mess into a pseudo- period of order 7, that 
is, into seven distinct bunches of points, three 
of which are shown in detail. The modification 
given in (c) results in a remarkably different 
but still messy limit set. 

In addition to the parabola and the sine, we also studied two other functions sat- 
isfying the conditions given above. One, a sixth-degree polynomial, was the transform 
to the unit interval of one of the one-dimensional cubic maps mentioned previously; 
the other was a trapezoid (in the X'J plane). 

For all four maps we calculated the periodic limit sets of order k that begin and 
end with x = i. These correspond to A values that are solutions of 

and are necessarily attractive because of the condition that d ~ ' { d x \ ^ ~  = 0. (This 
condition guarantees what is referred to as superstability.) To characterize the limit 
sets in a function-independent way, we used the minimum distinguishing information, 
namely, the positions of the successive iterates relative to x = i. For this purpose 
we employed the letters R and L ("right" and "left"). For example, when k = 5, all 
our maps have three distinct periodic limit sets of order 5, each associated with a 
different value of A. Naturally, for different functions the A values are different, as 
are the actual values of the iterates, but the R ,  L (or MSS) patterns are identical. The 
three patterns for k = 5, in order of increasing A, are h Ã R + L + R Ã R Ã‘ i ,  

Ã R Ã L + L + R -+ 2, and $ Ã R + L ^L  ̂L +. Omitting the initial and 
final i 's, we may write these patterns in simplified form as R L R ~ ,  RL^R, and R L ~ .  

The identity of the MSS patterns and their ordering on A was found to hold among 
all of our four functions for all values of k such that 2 < k < 15. We immediately 
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THE "INDENTED TRAPEZOIDy' MAP 

Fig. 12. Because it is not strictly concave, the 
"indented trapezoid" map exhibits "multiplic- 
ity"; that is, it does not exhibit a one-to-one 
correspondence between MSS patterns (see 
text) and A values. In particular, for certain 
ranges of the parameters b and c, some of the 
patterns correspond to three values of A. 
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noted the phenomenon that Feigenbaum later called period doubling. As an example, 
consider the period of order 2, the pattern of which is R. The patterns of its first two 
doublings are RLR (k = 4) and RLR~LR (k = 8). A simple rule relates the pattern P 
of a given period and that of its doubling: if P contains an odd (even) number of R's, 
the pattern of its doubling is PLP (PRP). Note that P must be an MSS pattern; that is, 
it must begin and end at the x value for which x' is maximum. (Obviously, not every 
R, L succession is such a pattern.) 

Period doublings are, of course, ordered on increasing A. The A values corre- 
sponding to two successive doublings, A1 and Az, are "contiguous" in the sense that no 
A between Ai and As corresponds to a periodic limit set beginning at 1, 

Our initial work indicated that a large class of maps generates the same sequence 
of patterns ordered on increasing A. Later experiments on some fifty additional maps A 

confirmed this conclusion. It is still not known exactly, however, how this "large class" 
(almost certainly infinite) should be defined. 

- 

One of the most interesting results presented in the MSS paper is an algorithm for 
x ' 

generating the MSS sequence. No iterations are needed, and no functions are explicitly 
specified. The algorithm is purely logical; given a limiting value kmax for the period 
order, it produces all MSS patterns with k < kmax in the canonical ordering (that is, 
on increasing A). An independent proof of this algorithm is given for trapezoidal maps 
in Louck and Metropolis 1986. Others have found new algorithms for generating the 
MSS sequence, but, in my opinion, none of these are substantially simpler than ours. 

Since the publication of these results, many mathematicians and physicists have 
studied one-dimensional maps, but much more work has been done on Feigenbaum's 
"quantitative" universality than on the "structural" universality represented by the MSS 

(030) x 
sequence. A few years ago Bill Beyer, Dan Mauldin (of North Texas State University), 

(1 ' 0) 

and I initiated new attacks on some of the problems suggested by MSS. We also 
considered a few new questions. One of these has to do with maps that exhibit a multiple 
appearance of some MSS patterns. If a map is strictly concave, it is our conjecture that 
each pattern occurs for just one value of A. We found that something else can happen 
otherwise. Consider the "indented trapezoid" map shown in Fig. 12, which is not 
strictly concave. For certain ranges of the parameters b and c, the same MSS pattern 
corresponds to three different A values. (This phenomenon implies that Feigenbaum's 
quantitative universality, which hinges on the occurrence of period doublings at unique 
A values, is not applicable to certain maps and hence is less than truly universal.) 

Our multiplicity, as we called it, is more than an interesting mathematical fact. It 
has helped in understanding the latest results of an extensive study of the Belousov- 
Zhabotinskii reaction by H. L. Swinney and his collaborators. (The B-Z reaction, the 
oxidation of malonic acid by an acidic bromate solution in the presence of a cerous ion 
catalyst, is an oscillating chemical system, that is, a system in which the concentrations 
of the chemical species do not vary monotonically with time but instead oscillate, 
sometimes chaotically, sometimes periodically.) In 1982 Simoyi, Wolf, and Swinney 
had identified certain members of the MSS sequence in the periodic concentration 
variations of the bromide ion, one of some thirty chemical entities involved in the 
reaction. In addition they found that the MSS patterns observed were ordered on 
a parameter r (the residence time of the reactants in the reaction vessel, which is 
inversely proportional to their rate of flow through the vessel) in exactly the same 
manner as the patterns in the MSS sequence are ordered on A. Several years later 
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Coffman, McCormick, and Swinney made further measurements on the system, this 
time controlling the flow rate much more precisely. Again they found members of 
the MSS sequence, but some of the patterns occurred for three values of T. At that 
time they knew nothing of our recent work on the indented trapezoid and suspected 
that their strange results were due to some systematic error. How they came to learn 
of multiplicity was a matter of pure chance. Swinney was visiting North Texas State 
(where Mauldin teaches mathematics) to give a talk. His hosts, looking for some way 
to amuse him between lunch and the colloquium, brought him to Mauldin's office. To 
pass the time, Dan started to discuss our discovery. Swinney immediately realized that 
what he and his colleagues had seen was not, after all, an artifact. They went on to 
identify the analogue of the indentation parameter c as trace impurities in one of the 
reactants. It is certainly gratifying when some purely mathematical construct helps to 
explain physical reality. 

Number Theory 

Stan Ulam's name seems to have disappeared from these pages; it is time to bring 
it back, if only briefly. Stan was not a number theorist, but he knew many number- 
theoretical facts, some of them quite recondite. As all who knew him will remember, 
it was Stan's particular pleasure to pose difficult, though simply stated, questions in 
many branches of mathematics. Number theory is a field particularly vulnerable to the 
"Ularn treatment," and Stan proposed more than his share of hard questions; not being 
a professional in the field, he was under no obligation to answer them. 

Stan was very much interested in "sieve" methods-the sieve of Eratosthenes 
to generate the primes is the most famous-but from an experimental rather than an 
analytic viewpoint. He was always trying to invent new sieves that would generate 
sequences of numbers that were in some sense prime-like. His greatest success was 
the "lucky number" sieve (the name is derived from a story in Josephus's History of 
the Jewish War). In Eratosthenes's sieve one crosses out 1 from a list of the integers 
and then, keeping 2 (the first prime), crosses out all of its other multiples. The first 
survivor after 2 is 3, so next one crosses out all of its higher multiples, and so on. 
In the lucky number sieve one first crosses out every second number, that is, all the 
evens; in fact, one throws them out of the list, which is consequently collapsed. The 
first survivor after 1 is 3, so, again starting from the beginning, one throws out every 
third number, collapsing the list further. The next survivor is 7, so one then throws out 
every seventh number, and so on. The first ten lucky numbers are 1, 3, 7, 9, 13, 15, 
21, 25, 31, and 33. All lucky numbers less than 3,750,000 were known by the early 
sixties. (Compared to the sieve for the primes, the lucky number sieve is rather slow.) 
Perhaps progress has been made, but I doubt that the range has been increased by a 
factor of 100 to match our current knowledge of the primes. 

Although the lucky numbers are clearly not a multiplicative basis for the integers, 
they do have some prime-like properties. For example, their asymptotic distribution is, 
to first order, the same as that of the primes (Hawkins and Briggs). The luckies are, 
however, somewhat sparser than the primes, as, if I am not mistaken, Stan predicted. 
(Expressions for pn , the nth prime, and 4 , the nth lucky number are 

pn = n Inn + n ln(1n n) + higher order terms 
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ana 
1 2 

in = n Inn + -n (ln(1n n)) + higher order terms. 
2 

Of course these expressions make sense only for large n. Nevertheless, if we (reck- 
lessly) disregard the higher order terms, they imply that in > p,, for n > 1619. In fact, 
however, we find that in > pn for 1 1 < n 5 3,750,000.) The distribution of the lucky 
numbers is similar to that of the primes in another respect: there seem to be an infinite 
number of lucky "twins," that is, luckies whose difference is 2. The evidence for this 
is far from overwhelming because the lucky sieve is hard to implement on a computer. 

What I learned from Stan's ventures into number theory was that amateurs can 
make useful contributions to the field. That moved me to launch an attack on my 
favorite classical problem, the Goldbach conjecture. This is the statement, made by 
Christian Goldbach in a letter to his friend Euler, that every even integer equal to or 
greater than 6 is the sum of two odd prime numbers in at least one way. It remains 
unproven to this day, although very few mathematicians have doubts about its truth. 
Curiously, the analogous problem for odd integers, namely, that from some point on, 
each is the sum of three odd primes, was proved by Vinogradov in 1937. His original 
proof is long and difficult; it may have been at least a decade before its correctness was 
generally admitted. As for the Goldbach conjecture, the best result to date is that all 
sufficiently large even integers can be expressed as the sum of a prime and an integer 
that has at most two prime factors. This result, due to J.-R. Chen, is considered to be 
the greatest triumph ever achieved by sieve methods. That the Goldbach "property" 
is true for lucky numbers was conjectured by Stan, and work by Myron Stein and me 
gives some support. Stan's conjecture should not be too surprising in view of a 1970 
study by Everett and me, which shows that almost all sequences with overall prime-like 
distributions have both the twin property and the Goldbach property. (Here "almost 
all" is to be understood in a measure-theoretic sense.) 

In the mid sixties Myron Stein and I decided to look at the Goldbach problem 
numerically. We started by examining the so-called Goldbach curve, that is, the plot 
versus the even numbers of the total number of ways of expressing each as the sum 
of two primes. The curve is rather bumpy, usually peaking locally at multiples of 6 
(as explained in the introduction to Stein and Stein 1964). Clearly many more primes 
exist than are necessary to constitute an additive 2-basis for the even numbers. This 
motivated us to look for sparse subsets of the primes possessing that property ("S" 
bases). We found a good algorithm (the S algorithm) for producing such subsets; each 
is completely determined by the choice of a smallest prime po. Our S bases cover 
almost all the evens from 2po to 10,000,000, leaving uncovered only a few low evens 
at the start. The sparseness achieved is striking; with one exception the S bases consist 
of less than 1.6 percent of the primes less than 10,000,000. The exception is the basis 
beginning with 7, which contains roughly twice as many primes as any other (a fact 
still unexplained). Our conclusion from this work is that the Goldbach property does 
not critically involve the famous prime property of being a multiplicative basis for the 
integers. 

In concluding I must mention that the above investigation of the Goldbach problem 
moved the number theorist Daniel Shanks to convey on those involved the title "Los 
Alamos School of Experimental Number Theory." As to this new institution, there is 
no doubt that Stan Ulam was the founder. 
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Paul R. Stein has been a staff member at the Laboratory since 1950, working on problems that range from 
mathematical biology to nonlinear transformations and experimental number theory. 
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Learning from Ulam 

.d.--b---.- * ---- 
w A "LITTLE INVENTION" , 

. . 
Fig. 1. K. Kuratowski posed the following 
problem to his calculus class: Over a non- 
negative, decreasing function on the posi- 

tive part of the real line, construct a step 

function with steps of equal depth. Prove 
that the area of the shaded regions between 

the two functions is finite. Ulam's solution 
was to move each shaded region into the 
first column, the area of which is finite. 

alized Bernstein's Theorem." That short 
paper solves a problem posed by Kura- 
towski. It belongs to the theory of jigsaw 
puzzles (also called the theory of equiva- 
lence by finite decomposition) and is one 
of the earliest applications of graphs in 
set theory. It appears in the 1974 vol- 
ume Stanislaw Ularn: Sets, Numbers, and 
Universes, which contains more than half 
of Ulam's hundred or so then-published 
papers. We can learn a lot from that vol- 
ume. I will try to describe some of what I 
have learned, but first let me record some 
memories from our numerous conversa- 
tions over the years. 

Ulam liked to consider amusing objects 
and processes. It didn't matter to him 
whether or not they were real or imagi- 
nary, but they had to be intrinsically inter- 
esting, not just tools. Consequently most 
of his work has a directness similar to 
the directness of an observation of na- 
ture. That distinguishes his work from the 
majority of mathematical papers, which 
elaborate existing theories. In fact, in his 
later life he became quite critical of such 
mathematical investigations, which he re- 
garded as too abstruse or unimaginative. 
He would even remark that the study of 
specific subjects, such as advanced chap- 
ters of algebra, algebraic topology, or 
analysis, was motivated by the history of 
mathematics rather than by the interest or 
notoriety of their problems. I would reply 
that mathematics is also an art, motivated 
by its internal beauty, and that only per- 

sistent study may reveal that beauty. He 
would agree only that his opinion was not 
easy to interpret correctly. In the end I 
am sure that there is wisdom in what he 
said, if only because he discovered sev- 
eral facts that are fundamental to mod- 
em mathematical culture, and I can hardly 
imagine discoveries of that nature in the 
areas he was criticizing. 

Measurable Cardinals 

I will now try to tell you about one of 
Ulam's important discoveries. It pertains 
to the foundations of mathematics and to 
the theory of large cardinal numbers. To 
give it the proper perspective, let me re- 
call that Euclid was the first to organize 
the mathematics of his time into an ax- 
iomatic theory. That means he started 
from certain basic principles called ax- 
ioms that he accepted without proof, and 
from them he obtained by pure deduction 
all the mathematical knowledge of his 
time. The system of Euclid became the 
accepted definition of mathematics until 
the time of Newton and Leibnitz. Af- 
ter the discovery of calculus, it became 
apparent that the development of math- 
ematics within the system of Euclid is 
very unwieldy, and the system had to be 
abandoned. For a few centuries mathe- 
matics was in a sense unruly. Axiomatic 
organization returned to it around the turn 
of this century with the discoveries of 
Frege, Cantor, and Zermelo. Frege de- 

veloped logic, Cantor invented and de- 
veloped set theory, and Zerrnelo gave ax- 
ioms for Cantor's set theory. Soon it be- 
came clear that all modem mathematics 
can be smoothly developed within set the- 
ory. Gradually it also became apparent 
that there is a whole hierarchy of larger 
and larger set theories, and one of the best 
ways to classify them is to see how large 
are the infinite cardinal numbers that can 
be shown to exist in those theories. (By 
a famous definition of Cantor, two sets A 
and B,  finite or infinite, have the same 
cardinal number if and only if there ex- 
ists a one-to-one function mapping A onto 
B). One might think that very large cardi- 
nal numbers are rather exotic and abstract 
objects whose existence is not of great 
mathematical interest. But by a famous 
theorem Godel proved in 1931 (the so- 
called second incompleteness theorem), it 
follows that the larger the cardinal num- 
ber whose existence can be proven in a 
given set theory, the more theorems can 
be proved in that theory, even theorems 
pertaining to such elementary operations 
as the addition and multiplication of inte- 
gers. This fact was not yet known at the 
time Ulam made his discovery. His mo- 
tivation was different-he was attracted 
by the mystery of the very large cardinal 
numbers for its own sake. Let me try to 
explain his theorem. 

The smallest infinite cardinal number 
is called No (aleph zero). It is the cardi- 
nality of the set of integers. Clearly No 
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has the following property: If we mul- the Ai's are disjoint. 
tiply less than No cardinal numbers each Ulam considered special measures that 
of which is less than Ho, then the prod- satisfy some additional conditions: 
uct is also less than No. Well, of course, 
this tells only that the product of finitely 
many integers is finite. Thus we can say CI:  /^(A) = 0 whenever A consists of just 
that No is inaccessible by products. This one element of X; 
property is also called strong inaccessibil- 
ity: Uo is strongly inaccessible. Are there Cz: p(X) = 1 (that is, the measure of the 
any cardinal numbers larger than No (such whole space is 1); and 
cardinals are called uncountable) that are 
also strongly inaccessible? It turns out CT,: 0 is the set of all subsets of X. 
that this problem cannot be solved. The 
axioms of set theory do not imply the 
existence of such cardinals, and one can Measures that satisfy Co, C l ,  C2, and 
only postulate their existence as an ax- CT, are called universal measures. Read- 
iom, which is what Felix Hausdorff did. ers familiar with Lebesgue's measure may 
Indeed, a set theory in which we accept recall that it is not a universal measure 
this axiom is stronger (in the sense that it since the collection f2 on which it is de- 
gives rise to more theorems of arithmetic) fined is not the set of all subsets of [0,1]. 
than the original set theory of Cantor and On the other hand, Lebesgue's measure is 
Zermelo. invariant under translations, whereas the 

To explain the work of Ulam we need set X is just an abstract set without any 
the concept of a measure. For a set of transformations upon which p could be 
points on the plane, area is a measure, and assumed to be invariant. Even in this ab- 
for a set of points in three-dimensional stract setting it is very difficult to con- 
space, volume is a measure. In general struct a universal measure. For example, 
given any set X, a measure is a function if X is countable, no such measure exists 
p that attaches to subsets of X some non- since condition Ci plus countable addi- 
negative numbers in such a way that the tivity forces p,(X) to equal 0, contrary to 
following condition is satisfied: c2 . 

Ulam proved two fundamental results 
about universal measures. The first tells 

Co: If A and B are disjoint subsets of X,  that no universal measure exists for many 
then u(A U B) = p(A) + p(B). uncountable sets. In particular, for many 

consecutive cardinals larger than No (for 
example, N1, N 2 , .  . . , No;, . .), sets 

There are many variants of the concept of those cardinalities do not have univer- 
of measure. The version that is the most sal measures. 
important for mathematical analysis says To explain Ulam's second result, we 
that p(A) must be defined for all subsets A restrict the concept of universal measure 
of X that are in a collection fl of subsets still further by adding the following con- 
such that 0 is closed under countable dition: 
unions and complementations. That is, 
if A; G fl for i = 1,2, .  . ., then the union 
of the A;'s is in 0, UF1 A; E 0, and if C4: p(A) = 0 or p(A) = 1 for all subsets 
A, E 0 ,  then its complement, or X -A,, A of X .  
is in fl. Moreover the measure p must 
be countably additive; that is, if A; E 0 ,  
then p (\J  ̂ A;) = ^(A;), provided The cardinal number of a set that has a 

countably additive measure satisfying Cl , 
C2, C3. and CA is called an Ulam cardi- 
nal. Again, we can ask whether any Ulam 
cardinals exist. Ulam's famous theorem 
is that if such a cardinal does exist, then 
it is strongly inaccessible. This result im- 
plies that if we consider two set theories, 
one in which we assume the existence of 
uncountable strongly inaccessible cardi- 
nals and the second in which we assume 
the existence of Ulam cardinals, then the 
second theory is at least as strong as the 
first. Today we know many interesting 
theorems that follow from postulating the 
existence of Ulam cardinals. In partic- 
ular, thirty years after Ulam's paper on 
measurable cardinals. William Hanf and 
Alfred Tarski proved that the least un- 
countable strongly inaccessible cardinal 
is smaller than the least Ulam cardinal. 
Thus a set theory in which Ulam cardi- 
nals exist is strictly stronger than one in 
which only uncountable strongly inacces- 
sible cardinals exist. Many more results 
of this sort have been discovered since. 
The theory of large cardinals has become 
very rich, but Ulam's paper remains one 
of its keystones. 

Ergodic Theory and Topology 

Between 1929 and 1938 Ulam pub- 
lished about twenty papers. What dis- 
tinguishes those from the papers of other 
members of the Polish school before 1939 
was his interest in topological groups, es- 
pecially the groups of homeomorphisms 
of spheres. 

A homeomorphism of a space X is a 
transformation of X onto itself that is one- 
to-one and continuous and whose inverse 
is also continuous. Of course such trans- 
formations constitute a group under com- 
position. It is not obvious how to intro- 
duce a natural topology or even metriza- 
tion into such a group. The following 
formula was often proposed (for exam- 
ple, it appears in Banach's classic book 
Thkorie des Operations Linkaires): The 
distance between two homeomorphisms f 
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and g of a compact space X,  Dist(f , g), 
is given by 

Dist(f,g) = max dist(f ( x ) , ~ ( x ) ) +  
x EX 

a x  dist (f -'(x),g-'(x)) , 
.Â¥ ex 

where dist denotes the distance in X .  
The surprising property of this formula 

is that it converts the space of homeo- 
morphisms of X into a complete met- 
ric space. In other words, if a sequence 
of homeomorphisms satisfies the condi- 
tion of Cauchy, then it has a limit that 
is a homeomorphism. The fact that the 
space of homeomorphisms can be treated 
as a complete metric space is very im- 
portant because for such spaces there ex- 
ist very natural definitions of largeness or 
smallness of subsets. The small ones are 
called meager (or of the first category) 
and the large ones comeager (or com- 
plements of meager). These topological 
concepts were invented by Baire. Sev- 
eral brilliant applications of these notions 
were made by Banach and Mazur. A very 
famous one was made by John C. Oxtoby 
and Ulam around 1941. Let me try to de- 
scribe it here. 

Take a glass of water, gently stir its 
contents, and let the water stop moving. 
Each particle of water has an initial and 
final position. The operation has thus 
defined a transformation of the interior 
of the glass into itself. Since water is 
viscous, this transformation is continuous 
and its inverse is also continuous. So we 
have here a homeomorphism. Moreover, 
since water is incompressible, the home- 
omorphism is volume-preserving. Home- 
omorphisms with that property constitute 
a complete subspace of the space of all 
homeomorphisms. If our transformation 
had been a simple rotation, then the alti- 
tudes of the particles of water and their 
distances from the central axis of the glass 
would not have changed. Many parts of 
the water would have remained invari- 
ant; that is, such parts would have been 
mapped into themselves. Even if we had 

applied the rotation many times, the wa- 
ter would never have been mixed. Are 
there any volume-preserving homeomor- 
phisms that do mix? Such transforma- 
tions, which are called ergodic, or met- 
rically transitive, must exist if the er- 
godic hypothesis of statistical mechan- 
ics is correct. However, the existence 
of such transformations had remained an 
open question since the work of Poincark 
and G. D. Birkhoff. Oxtoby and Ularn, in 
their paper entitled "Measure-Preserving 
Homeomorphisms and Metrical Transitiv- 
ity," showed not only that such home- 
omorphisms exist but also that the set 
of ergodic homeomorphisms is comea- 
ger, that is, large in the sense of cat- 
egory. More precisely, any homeomor- 
phism of that comeager set has the prop- 
erty that its application to any proper part 
of our glass of water deflects its bound- 
ary (Fig. 2). Thus the homeomorphism 
mixes the water in the sense that no part 
returns to its initial position. The Oxtoby- 
Ulam theorem remains one of the high 
points of the mathematical theory con- 
cerning ergodic properties of dynamical 
systems. The introduction to their paper, 
excerpted on the following page, explains 
the connection to the ergodic hypothesis. 
(These excerpts may be better understood 
after reading "The Ergodic Hypothesis: 
A Complicated Problem of Mathematics 
and Physics," as well as the section enti- 
tled Problem 2. Geometry, Invariant Mea- 
sures, and Dynamical Systems in the arti- 
cle "Probability and Nonlinear Systems," 
all in this issue.) 

We must caution, however, that appli- 
cation of mathematical theorems to the 
real world is sometimes a delicate prob- 
lem. As you know, a sequence of heads 
and tails obtained by consecutive tosses 
of a fair coin has the property that the 
frequency of heads converges to 112 as 
the number of tosses becomes large. One 
can say (and prove in precise mathemat- 
ical terms) that if we choose a sequence 
at random from the space of all such se- 
quences, then, with probability 1, the lim- 

EFFECT OF AN ERGODIC 
TRANSFORMATION 

Fig. 2. If h is an ergodic transformation, 
every surface S separating the water is de- 

flected by h from its original position. 

iting frequency of heads in this sequence 
is 112. Unfortunately, in another sense, 
namely that of category, almost all se- 
quences (namely a comeager set) do not 
have any limiting value for the frequency 
of heads! So the very sense in which 
almost all volume-preserving homeomor- 

Los Alamos Science Special Issue 1987 



Learning from Ulam 

phisms of a cube are ergodic suggests the 
physically false result that almost all se- 
quences of heads and tails lack a well- 
defined frequency of heads. Can we then 
trust the theorem of Ulam and Oxtoby 
as an expression of the truth of the er- 
godic hypothesis in physics? Stan and I 
often discussed this question. We thought 
that the answer is yes, but what is really 
needed is a new theorem in which almost 
all, in the sense of category, is replaced 
by some other more reliable sense. (I 
have outlined an idea of such a new the- 
orem or conjecture in two papers in Jour- 
nal of Symbolic Logic, one in volume 46 
(198 1) and the other in volume 5 1 (1 986), 
but I do not know how to prove it. 

Ularn and J6sef Schreier obtained an- 
other interesting result about the group of 
homeomorphisms of a spherical surface. 
They proved that there exist two special 
homeomorphisms such that every home- 
omorphism in the group can be approx- 
imated with arbitrary accuracy (relative 
to the distance defined above) by appro- 
priate iterative compositions of those two 
homeomorphisms and their inverses. 

Kuratowski and Ulam proved an ex- 
tension of the theorem of Fubini to the 
context of Baire's category that is often 
very useful. 

An interesting feature of Ulam's work 
followed from his great ability to col- 
laborate with others. Almost all of his 
papers are co-authored with other math- 
ematicians or physicists. He had many 
ideas, and he was very successful in stir- 
ring the imagination and enthusiasm of 
others. His most important collaborators 
were J6sef Schreier, John C. Oxtoby, and 
C. J. Everett. He invented a large number 
of original problems, some of which were 
solved by other mathematicians and even 
became famous theorems. One such con- 
jecture was proved by K. Borsuk and is 
known today as the theorem on antipodes 
(the two points at the opposite ends of a 
diameter of a sphere are called antipodes 
of each other). It is sometimes called 
the ham-and-cheese sandwich theorem. It 

tells the following: For every continu- 
ous mapping of the spherical surface into 
the plane, there exist antipodes that are 
mapped into the same point on the plane. 
This theorem is equivalent to the follow- 
ing statement. Given three bodies (say 
ham, cheese, and bread), one can find a 
single plane that divides each body into 
two parts of equal volume. (Each body 
may consist of disjoint pieces, as does the 
bread in a sandwich, and the bodies may 
overlap, as shown in Fig. 3a.) Another 
equivalent statement is that at any time 
antipodal points can be found on the earth 
where the temperature and the barometric 
pressure are the same (Fig. 3b). 

(' 
' IMPLICATIONS OF THE 
BORSUK-ULAM THEOREM 

Fig. 3. You can divide the volumes of any 
three bodies in half with a single plane 

, (not shown) even when the bodies inter- 
sect. (b) You can always find antipodes 
on the earth with the same pressure and 

. temperature. 
t 

Topics in Biology and 
Some Applications of Computers 

I began to collaborate with Stan Ulam 
in 1969 when he invited me to the Uni- 
versity of Colorado in Boulder. We spoke 
frequently about the problems of the orga- 
nization and function of the human brain 
and the structure of memory. He pre- 
sented his ideas on this subject in the 
talk "Reflections on the Brain's Attempts 
to Understand Itself," which is posthu- 
mously published in this issue. 

We also talked often about the problem 
of accumulation of mutations in a given 
species. As a result of our discussions I 
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m 

tricd Transitivity" 

I n the study of dynamical systems one 
is led naturally to the consideration of 
measure-preserving transformations. 

A Hamiltonian system of I n  differen- 
tial equations induces in the phase 
of the system a measure-preserving flow, 
that is, a one-parameter group of trans- 
formations that leave invariant the In- 
dimensional measure. . . . If the differ- 
ential equations are sufficiently regular 
the flow will have corresponding prop- 
erties of continuity and differentiability. 
Thus the study of one-parameter contin- 
uous groups of measure-preserving auto- 
morphisms of finite dimensional spaces 
has an immediate bearing on dynamics 
and the theory of differential equations. 

In statistical mechanics one is espe- 
cially interested in time-averaging prop- 

m. In the classical theory 

ise conditions un- 

c theorem of Birichoff. This estab- 

tions, and showed that if we neglect sets 
of measure zero, the interchange of time- 
and space-averages is permissible if and 
only if the flow in the phase space is met- 
rically transitive. A transformation or a 
flow is said to be metrically transitive if 
there do not exist two disjoint invariant 
sets both having positive measure. Thus 
the effect of the ergodic theorem was to 
replace the ergodic hypothesis by the hy- 
pothesis of metrical transitivity. 

Nevertheless, in spite of the simplifica- 
tion introduced by the ergodic theorem, 
the problem of deciding whether partic- 
ular systems are metrically transitive or 
not has proved to be very difficult. . . 

. . .The known examples of metrically 
transitive continuous flows are all in man- 
ifolds, indeed in manifolds of restrict 
topological type, either toruses or m m -  
folds of direction elements o 
of negative curvature. An 
problem in ergodic theory 
existence question-can a metrically tran- 
sitive continuous flow exist in an arbitrary 
manifold, or in any q x ~ e  that is not a 
manifold? In the present paper we shall 
obtain a complete answer to this ques- 

on the topological level, for 
ion three or more. It 
only condition that 

d is a trivially nec- 
essary kind of connectedness. In 
dm, there exists a metrically tra 
continuous flow in 

tern, 

cause it involved a topalogic 

arbitrarily close to all 
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proposed to study the "genealogical dis- 
tance" d(a ,  b) between two individuals a 
and b, which is defined as follows. Count 
the number of ancestors of a that are not 
ancestors of b, and add to it the number 
of ancestors of h that are not ancestors 
of a .  Assume that the size of the popu- 
lation is constant in time, that mating is 
random, and that a and b belong to the 
same generation. Ularn soon discovered 
by experimenting on a computer that un- 
der those conditions the expected value 
of d (a ,  b) is twice the size of the popu- 
lation. Later Joseph Kahane and Robert 
Man- proved this conjecture (Journal of 
Combinatorial Theory, Series A, volume 
13 (1972)). The smallness of this ex- 
pected distance suggests that all profitable 
mutations are soon present in all individ- 
uals of subsequent generations. 

Ulam liked to invent problems that 
could-be studied by means of electronic 
computers. He was the first to realize that 
computers are ideal tools for watching the 
evolution of patterns governed by simple 
laws. He proposed many experiments of 
this type, the most famous of which is re- 
ported in the paper of Ferrni, Pasta, and 
Ulam on dynamical evolution governed 
by nonlinear laws. Later he invented var- 
ious simple rules to produce crystal-like 
growths in space. He also observed sim- 

ple cases of "wars" between growing pop- well-developed mathematics. Few math- 
ulations of crystals or cells. Nowadays ematicians have the intelligence or the 
many such processes are being investi- courage that Ulam had to think about im- 
gated; Conway's "game of life" is a popu- portant problems irrespective of whether 
lar example. It is hoped that this approach their solutions are in sight. But this is the 
will help us to understand certain quali- only course that can lead to outstanding 
tative features of natural evolution. For achievements. 
example, one can replace the complicated 
rules of chemistry governing real life by 
simpler rules and, through numerical sim- 
ulation, watch the ways in which the pat- 
terns (objects) yielded by these rules grow 
and compete in complicated and surpris- 
ing ways. (In my own work I am try- 
ing to explain human thought and leam- 
ing, which we so often discussed together, 
by applying local rules of interaction that 
may define interesting processes. It is al- 
ready known that the computations going 
on in the cerebral cortex are local in some 
sense.) 

I have tried to give you glimpses of 
certain works of Stan Ulam. Of course, 
in this short article I have discussed only 
those that seem to me the most important 
or with which I was the most familiar. 

Every creative mathematician must al- 
low his imagination to flow in a free 
way. I think that Ulam did this more 
than others. He was drawn to work upon 
problems that suggested essentially new 
ideas and avoided the attractive pull of 
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mong a variety of fundamental 
themes running through Stan 
Ulam's mathematical research, 
.one that particularly intrigued 

him was that of similarity. He was con- 
stantly fascinated by the problem of quan- 
tifying exactly how alike (or different) 
two mathematical objects or structures 
were, and during his career he discov- 
ered many ingenious ways of doing so. 
A good example is the well-known Ulam 
distance between finite sequences, which 
has recently been applied so effectively 
in analysis of DNA sequences and recog- 
nition of speech (Sankoff and Kruskal 
1983). (Also see "Sequence Analysis: 
Contributions by Ulam to Molecular Bi- 
ology" in this issue.) 

Here I will describe another measure 
of similarity suggested by Stan, one ap- 
plicable to a wide assortment of combina- 

A Similarity 
Measure 

for Graphs- 
reflections on a theme 

of Ulam 
by Ronald L. Graham 

torial structures. Like many seeds planted 
by his fertile imagination, this similarity 
measure has taken root and flowered in 
the modem mathematical jungle. 

The story begins one morning in late 
July of 1977, during one of my aperi- 
odic visits to Stan and Franqoise's mar- 
velous house on the outskirts of Santa Fe. 
Stan and I had just finished playing ten- 
nis, which not only generated a plenti- 
ful supply of perspiration (and consequent 
thirst) but also inevitably led to a lively 
discussion of the differences in the game 
at an altitude of over 7000 feet, where the 
balls are effectively more highly pressur- 
ized, the air resistance is diminished, less 
oxygen is available for demanding lungs, 
and so on. 

Perhaps stimulated by trying to get a 
better grasp on understanding just how 
various aspects of the game (such as the 
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A Similarity Measure for Graphs 

EXAMPLES OF GRAPHS 

Fig. 1. Shown here are the pictorial and mathe- 
matical representations of two simple graphs. 
Gl has the maximum number of edges for a 
given number n of vertices (namely, (3, or 
',n(n - 1)). G2 is an example of a graph con- 
sisting of disjoint subgraphs. (For simplicity in 
this and all other figures, the edges of graphs 
are depicted as straight lines.) 

ISOMORPHISM OF GRAPHS Gi 

- /  hi G2 
Fig. 2. Let T be the following one-to-one trans- 

formation of Vl onto V2: al -+ a?, fri -+ d2, 
<: I 1 '̂ " T  

cl Ã‘ bz, dl -+ @, &i -+ c2, and fi -+ f2. t -J./ Ã f 
Since T(El) = Â£2 GI is isomorphic to G2, or, 
symbolically, GI 'S G2. Note that a neces- /b< sary condition for isomorphism of two graphs 
is that they have the same number of vertices 

f1 "\ ,/ di 
and edges. The relation of isomorphism, like >̂  \. that of equality in arithmetic, is reflexive, sym- 
metric, and transitive. That is, G '2 G; if '1 = ial bi 

serve, the stroke, and the strategy) might 
change under varying conditions, Stan 
suddenly suggested, "Why not measure 
the difference between objects by trying 
to break them up into as few as possible 
pairwise equal pieces?" At first I didn't 
see quite what Stan was driving at (which 
happened fairly often), but after we talked 
it over, it became clear that here was an 
entirely new way of defining a measure 
of similarity between two (or more) com- 
binatorial structures. In fact, it is very 
much akin to comparing two complex 
molecules by breaking them up into a 
number of pairwise identical fragments- 
the smaller the number of pieces needed, 
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the more similar are the molecules. 
Our first application of the approach 

was to a class of mathematical objects 
known as graphs. Simply speaking, a 
graph G consists of a set V of elements 
called the vertices of G and a set E of 
certain pairs of elements of V called the 
edges of G. Graphs are often pictured by 
representing the vertices in V as points 
and the edges as lines between the pairs 
of points in E (Fig. 1). 

Before proceeding to the main topic 
of the article, we need two more ba- 
sic definitions-those for isomorphism of 
graphs and for a partition of the edge set 
of a graph. 

Two graphs G1 and G2 are said to be 
isomorphic (GI F G2) if, as shown in 
Fig. 2, a one-to-one transformation of Vi 
onto V2 effects a one-to-one transforrna- 
tion of E l  onto E2. 

By a partition of the edge set E of a 
graph G is meant a set of pairwise disjoint 
subsets Ei of E such that Ui Ei = E 
(Fig. 3). (The number of ways to partition 
an edge set depends, in a complicated 
way, on the number of edges of the graph, 
e(G).) 

We now come to the key definitions. 
Let G and G' be two graphs having the 
same number of edges. An Ulam decom- 
position of G and G' is a pair of par- 
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PARTITIONS OF THE EDGE SET 
OF A GRAPH 

Fig. 3. The edge set E of the graph G can be ui Ei = E) in numerous ways, two of which 
partitioned (divided into subsets Ei such that are illustrated here. 

Partition P Partition P1 

El = { ( v l ,  ~ 2 1 ,  ( V I  , ~ 3 1 ,  ( ~ 2 ,  ~ 3 ) )  E+ { ( v l  v z ) }  Eg = { ( V I  7 v 3 ) }  Eg = { ( V I  , v 4 ) I  

E2 = {(^'I 3 ~ 4 1 ,  ( ~ 2 ,  v 4 ) ,  ( ~ 3 ,  ~ 4 ) )  E; = { ( ~ 2 ,  ~ 3 ) }  E; = { ( v z ,  v 4 ) }  EL = { ( ~ 3 ,  ~ 4 ) )  

El U E2 = E E; U El U Eg U Â£ U E; U EL = E 

EXAMPLES OF MINIMUM ULAM 
DECOMPOSITIONS 

Fig. 4. The minimum Ulam decompositions 
shown here illustrate that U(G,  G') is a mea- 
sure of similarity for a pair of graphs that 
agrees with our intuitive notion of their resem- 
blance to each other in the sense of connec- 
tions among vertices: the two graphs in (a) 
bear less resemblance in that sense than do 
the two graphs in (b). 

Minimum Ulam Decomposition of G and G' Minimum Ulam Decomposition of G and G' 

EXAMPLES OF 

Fig. 5. Two examples of Fne, the set of graphs 
each of which has e edges and at most n ver- 
tices. (Graphs with isolated vertices are not 
shown.) In both examples n = 2e, the max- 
imum number of vertices for a given number 
of edges. me for n < 2e is a subset of Face- 

r s , 4  
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titions {E;, . . . , E,.} and { E { ,  . . . , E,!} of CALCULATION OF LOWER BOUNDS ON U(n)  
the respective edge sets of G and G such 

(a) G 
that, as graphs, Ei % E', for 1 < i < r .  

GI 

Such a decomposition always exists since 
we can always choose each Ei (and E') 
to be a single edge (and by hypothesis 
e(G) = e(Gf)). Further, define U (G , G') 

kq,i 
to be the least value of r for which an k + l  
Ulam decomposition of G and G' into r 
parts exists. (Figure 4 shows such mini- 

Minimum Ulam Decomposition 

mum Ulam decompositions for two pairs 
of graphs.) Thus U (G , G') is a similarity 
measure for pairs of graphs: the smaller 
U (G , G ') is, the more alike G and G' are. 
In particular, U (G, G') = 1 exactly when 
G and G' are isomorphic (that is, when (b) Minimum Ulam Decomposition 

they differ only in the way their vertices 
are labeled). 

We now extend our view from a single 
pair of graphs with the same number of 
edges to sets of graphs F n e  with e edges 
and at most n vertices (Fig. 5) and define 
the function U (n): 

So in U(n) we have a measure of the 
maximum dissimilarity among all pairs of 
graphs in me. 

A fundamental question about U (n) 
that occurs at the outset is this: How 
large can U (n) ever be? To whet your ap- 
petite for the answer to this question, let 
us determine U (G , G') for two examples. 
(U (n) is of course equal to or greater than 
U (G , G').) In the first example G is a 
k-rayed "star" (that is, it consists of one 
vertex joined to each of k others), and 
G consists of k  disjoint edges (Fig. 6a). 
Here e = k  and n = 2 k .  For such a pair 
of graphs, the only Ulam decomposition 

........................................................... 
Fig. 6. By considering pairs of graphs of the This situation might lead one to conclude that 
general form shown in (a), U(n) is found to be U(n) has no upper bound other than (3, the 
equal to or greater than i n ,  whereas by con- greatest possible number of edges possessed 
sidering pairs of graphs of the general form by any graph with n vertices. However, as 
shown in (b), U(n) is found to be greater than demonstrated in the text, U(n) has an upper 
$(n - I),  which is greater than i n  (for n > 4). bound that is linear in n. 

comes from taking each Ei and E', to be 
a single edge. Therefore gles (Fig. 6b). Here e = 3k and n = At this point one may well wonder 

3k + 1. What is U (G, G') for such pairs whether further search will produce even 
1 of graphs? It is not difficult to see that more complicated examples from which 

U(n) 2 U(G,Gt)  = k  = -n. 
2  the best we can do is to decompose each even larger lower bounds on U (n) can 

graph into k  disjoint 2-rayed stars and k be deduced. That this cannot happen 
In the second, slightly more sophisti- disjoint edges. Thus is the content of Theorem 1, which was 

cated example G consists of a 3k-rayed 2 2  the main result in our first paper on the 
star, and G' consists of k  disjoint trian- U(n) >, U(G, G') = 2k = -(n -1) -n. subject (Chung, Erdos, Graham, Ulam, 3 3 
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and Yao 1979). 

Theorem 1. For a suitable fixed constant 
c, U(n) < \n  + c  for all n.  

Our proof of Theorem 1 uses several 
ideas that are now standard items in the 
toolbox of every combinatorialist. One 
is the idea of a greedy algorithm. It 
seems only natural to try to remove the 
largest subgraph common to each of the 
two graphs for which one is seeking a 
minimum Ulam decomposition (although 
in many situations that myopic approach 
is far from optimal). Indeed, such a tech- 
nique is quite effective for the problem 
at hand. However, it leads to the next 
question: Just how large can we expect 
(or guarantee) such a common subgraph 
to be? Here the second technique we 
want to mention comes in, namely, the 
so-called probabilistic method, which was 
pioneered so effectively by Paul Erdos. 
Suppose G and G' each have n vertices 
and e edges. What we will show is that 
they must share a common subgraph H 
having at least 2e2/n(n - 1) edges. How- 
ever, we won't be able to specify what 
H is or how to get it-just that it exists! 
How do we do this? Every mathematical 
paper should have at least one proof, so 
here comes ours. 

Label the vertices of G and G' by, say, 
V = {x ̂ ... ,xn} and V = {xk.  .. ,x^,}. 
Let A denote the set of one-to-one map- 
pings of V onto V '. Thus, A has n! el- 
ements. If y = {x*} and y' = {xL,x!} 
are given elements in V and V', respec- 
tively, there are exactly 2(n -2)! elements 
A E A that map y onto y'. (The factor 
of 2 counts the two possibilities \(xi) = 
xJ., A(xj) = X! and A(xi) = x[, A(xj) = XL .) 
Define the indicator function iA(y^ y'): 

i \(y,yf) = { 1 if A maps y onto y', 
0 otherwise. 

Now sum i&, y') over all A ? A and all 
y E E , y '  E E f :  

In the first step we have interchanged the 
order of summation, and in the second we 
have used the previously noted fact about 
the number of A E A that map any given 
y E E onto any given yf  6 E f .  

Now we note that since S is a sum of 
n ! terms of the form ~ , , ,  i f i ,  y ') (one 
for each A ? A), at least one of those 
terms must equal or exceed their average, 
which of course is just 2e2(n - 2)!/n!, or 
2e2/n(n - 1). In other words, for some 
A E A, say Ao, we have 

2e2 
~ i A 0 ( Y 7 ~ ' )  2 - n(n - 1). 
Y , Y 1  

Having proved that the two graphs G 
and G have a common subgraph H with 
at least 2e2/n(n - 1) edges, suppose now 
that we remove H from G and G', pro- 
ducing the graphs GI and G[, which have 
at most el = e - 2e2/n(n - 1) edges. Our 
theorem says that those graphs also have 
in common a subgraph H l  with at least 
2e2/n(n - 1) edges. Remove H i  to pro- 
duce G2 and Gi, and so on. It is not hard 
to show that after repeating the process 
k times, we have graphs Gk and G; with 
at most n(n - 1)/2k edges. That in turn 
can be used to show that U(n) < f i n .  
To squeeze the last bit of juice out of the 
argument and show that U(n) < $n + c 
requires more complicated considerations 
that we will not go into here. 

I t was only natural that we began to 
wonder next about what happens if in- 

stead of starting with two graphs, we 
start with three (or more). Indeed, defin- 
ing U (GI,  G2, G3) as the minimum value 
of r for which an Ulam decomposition 
of GI ,  G2, and G3 exists and U3(n) as 
rnaxc, , ~ 2 , ~ a â ‚ ¬ r , ,  ~ ( G I ,  G27 G3), we soon 

saw that U3(n) was going to be larger than 
Udn) = U (n) by considering the exam- 
ple shown in Fig. 7. For those triplets 
of graphs, just as for the pairs of graphs 
shown in Fig. 6, the minimum Ulam de- 
composition consists of a certain number 
(approximately i n )  of 2-rayed stars and 
a certain number (approximately i n )  of 
disjoint edges. Thus 

It has been shown (this time by much 
more complicated arguments) that U3(n), 
like U2(n), possesses an upper bound 
(Chung, Erdos, and Graham 1981): 
Theorem 2. For a suitable fixed constant 
c, U3(n) < i n  + c for all n. 

As mathematicians are prone to do, we 
naturally began to look beyond U3(n) to 
the general case, namely 

Uk(n)= max U(G1, ..., Gk). 
GI ,..., ck ern,, 

Here, however, something completely un- 
expected happened. We had been guess- 
ing what the coefficient of n was going 
to be in the bound for U&) (why not 
$?) and more generally for Uk(n) (could 
it be &?). We were quite unprepared 
for the following result, which was finally 
proved with the full arsenal of techniques 
we were rapidly accumulating (Chung, 
Erdos, and Graham 1981): 

Theorem 3. For each k > 3, there is 
a fixed constant such that Uk(n) < 
i n  + ck for all n. 

In other words, the constant factor of 
2 that appears in the bound for U3(n) 
does not increase for values of k greater 
than 3. It is as though the space of n- 
vertex graphs is in some sense "three- 
dimensional," and once you have three 
graphs that are maximally separated, then 
adding further graphs can cause no real 
additional trouble. In fact, the most strik- 
ing result we were finally able to establish 
dealt with trying to decompose all graphs 
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on n vertices simultaneously into mutu- 
ally isomorphic subgraphs. If U *(n) de- 
notes the smallest number of subgraphs 
needed for such an Ulam decomposition, 
then we have the ultimate generalization 
of Theorem 1 (Chung, Erdos, and Gra- 
ham 1983): 

Theorem 4. For a suitable fixed constant 
c* ,  U*(n) < :n + c* for all n. 

A key concept arising in these investi- 
gations is that of an unavoidable sub- 

graph of a graph. To be precise, we say 
that H is (n, e)-unavoidable if any graph 
with n vertices and e edges contains H 
as a subgraph. For example, any n-vertex 
graph is (n, (")-unavoidable (since there 
is only one graph with n vertices and 
(3 edges and that graph includes all 
possible edges). Also, a d-rayed star 
is (n,  in (d  - 1) + 1)-unavoidable, where 
n > d + 1 and n must be even if d is 
even (Fig. 8). Many beautiful results on 
unavoidable graphs have been proved in 

recent years; indeed, that subject is de- 
veloping, primarily under the leadership 
of F. R. K. Chung, into a central area of 
graph theory. 

We mention finally the concept of a 
universal graph, a concept related to that 
of an unavoidable graph and one moti- 
vated in part by the problem of finding 
Ulam decompositions. If F is a fam- 
ily of graphs, we say that a graph G is 
F-universal if every F E F occurs as a 
subgraph of G.  The connection between 
these two ideas is the following. Let G 
denote the complementary graph of the 
graph G ;  that is, G is a graph with the 
same vertices as G and exactly (and only) 
the edges that G does not have. Thus, for 
a graph with n vertices, 

Now if F(i ,  j) denotes the family of all 
graphs with i vertices and j edges, then 
the statement 

is equivalent to the statement 

Figure 9 illustrates this equivalence. 
Much is now known about F-universal 

graphs for special classes of F. For ex- 
ample, if F = Tn,  the family of all trees 
(connected graphs containing no closed 
loops) with n vertices, then the minimum 
possible number s(Tn) of edges in a Tn-  
universal graph satisfies 

Fig. 7. By considering the graphs GI (a 9k2- 
rayed star), G2 (3k2 disjoint triangles), and 
G3 (Sk(3k  + 1) disjoint edges and a 3k-sided 
polygon with each vertex connected to every 
other), one can deduce that U3(n) is equal to 
or greater than about :n. (The graphs shown 
here illustrate the case k = 2.) 

CALCULATION OF A LOWER BOUND ON U3(n) 

A A A  
AAA 
e = 9k2, n = 3k(3k + 2)  

Minimum Ulam Decomposition of GI ,  Gg, and G3 

3 k 3 k - 1 ) + $ k ( 3 k + 1 ) =  $ ( 9 k 2 + k )  if k  = 4; or 4j - 1  
U(Gl ,Gs,G3)={ '  i k ( 3 k -  ( 1 )  - + j k ( 3k+  1 )+1  = $ ( 9 k 2 + k ) +  4 otherwise 

$ n  
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/ A,,., "., '̂ 'x.. 'a 
(a) d =3, n = 4 

A 3-rayed star is (4,5)-unavoidable 

(b) d = 4, n = 6 
A 4-rayed star is (6,l (^-unavoidable 

A d-RAYED STAR IS 
(n, -n(d - 1))-UNAVOIDABLE 

Fig. 8. (a) Since a 3-rayed star is (4,5)-unavoid- 
able, it is a subgraph of the single graph with 
4 vertices and 5 edges. (b) Since a 4-rayed 
star is (6,101-unavoidable, it is a subgraph of 
all four of the graphs with 6 vertices and 10 
edges, (c) Since a 5-rayed star i s  not (6,12)- 
unavoidable, it is not a subgraph of some 
graph with 6 vertices and 12 edges. 

(c) d = 5, n = 6 
A 5-rayed star is not (6,12)-unavoidable 

.......................................................................................... 
UNAVOIDABLE AND UNIVERSAL 
GRAPHS 

Fig. 9. The graph H and its complement H 
illustrate that H is (n, el-unavoidable if and 
only if H is F(n, (9 -e)-universal. H is (6,10)- 

unavoidable; that is, any graph with 6 vertices 
and 10 edges contains H as a subgraph (see 
Fig. 8). Therefore H is F(6,5)-universal; that is, 
any graph with 6 vertices and 5 edges (such as 
a 5-rayed star) is contained in H. 

That result, and many other similar re- 
sults (which have interesting applications 
to the design of VLSI chips, for exam- 
ple) can be found in Chung and Gra- 
ham 1978, 1979, 1983; Chung, Graham, 
and Pippenger 1978; Bhatt and Leighton 
1984; and Bhatt and Ipsen 1985. The 
basic idea here is that a silicon chip (or 
wafer) can have a universal graph G for 
some class of graphs, say for all trees with 
twenty vertices. When a particular tree T 
is needed for connecting various compo- 
nents on the chip, the appropriate edges 
of G can be "activated" to realize T. 

I n the spirit of the current algorithmic 
trend in mathematics, we might ask 
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how hard it is in practice to find the 
minimum1 Ulam decomposition for two 
graphs G and G'. In general that is 
almost surely a difficult computational 
problem. More precisely, the question 
"Is U (G , G') = 2?" has been shown (Yao 
1979) to belong to the notorious class 
of NP-complete problems, an intensively 
studied collection of thousands of com- 
putational problems, including the well- 
known traveling salesman and graph col- 
oring problems (see Garey and Johnson 
1979). Computer scientists believe, al- 
though no one has yet been able to prove, 
that an NP-complete problem is inher- 
ently intractable as the general instance 
size of the problem increases. The res- 
olution of that question remains as per- 
haps the outstanding problem in theoreti- 
cal computer science. 

It's interesting to note that the related 
question "Is U (G, G') = I?" (or "Is 
G Z G'?") is not known to belong to 
the class of NP-complete problems, and 
indeed, many people believe that an effi- 
cient algorithm does exist for its solution. 
A fuller treatment of such matters can be 
found in Garey and Johnson. 

I n conclusion, all of the preceding ques- 
tions can also be asked about numerous 

other combinatorial and algebraic struc- 
tures, such as directed graphs, hyper- 
graphs, partially ordered sets, finite met- 
ric spaces, and so on. Some work on 
those topics can be found in Chung, Gra- 
ham, and Erdos 198 1; Chung, Graham, 
and Shearer 1981; Babai, Chung, Erdos, 
Graham, and Spencer 1982; Chung, Er- 
dos, and Graham 1982; Chung 1983; and 
Chung and Erdos 1983. Clearly, how- 
ever, that area of research remains mostly 
unexplored-and is one more example of 
the prolific mathematical legacy left to us 
by Stan Ulam. 
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THE BEGINNING of the 
MONTE CARL0 METHOD 

by N. Metropolis 

T 
he year was 1945. Two earth- 
shaking events took place: the 
successful test at Alamogordo 
and the building of the first elec- 

tronic computer. Their combined impact 
was to modify qualitatively the nature of 
global interactions between Russia and 
the West. No less perturbative were the 
changes wrought in all of academic re- 
search and in applied science. On a less 
grand scale these events brought about a 
renascence of a mathematical technique 
known to the old guard as statistical sam- 
pling; in its new surroundings and owing 
to its nature, there was no denying its new 
name of the Monte Carlo method. 

This essay attempts to describe the de- 
tails that led to this renascence and the 
roles played by the various actors. It is 
appropriate that it appears in an issue ded- 
icated to Stan Ulam. 

Los Alarnos Science Special Issue 1987 

Some Background 

Most of us have grown so blase about 
computer developments and capabilities 
- e v e n  some that are spectacular-that 
it is difficult to believe or imagine there 
was a time when we suffered the noisy, 
painstakingly slow, electromechanical de- 
vices that chomped away on punched 
cards. Their saving grace was that they 
continued working around the clock, ex- 
cept for maintenance and occasional re- 
pair (such as removing a dust particle 
from a relay gap). But these machines 
helped enormously with the routine, rela- 
tively simple calculations that led to Hi- 
roshima. 

The ENIAC. During this wartime pe- 
riod, a team of scientists, engineers, and 
technicians was working furiously on the 

first electronic computer-the ENIAC- 
at the University of Pennsylvania in Phil- 
adelphia. Their mentors were Physicist 
First Class John Mauchly and Brilliant 
Engineer Presper Eckert. Mauchly, fa- 
miliar with Geiger counters in physics 
laboratories, had realized that if electronic 
circuits could count, then they could do 
arithmetic and hence solve, inter alia, dif- 
ference equations-at almost incredible 
speeds! When he'd seen a seemingly 
limitless array of women cranking out 
firing tables with desk calculators, he'd 
been inspired to propose to the Ballistics 
Research Laboratory at Aberdeen that an 
electronic computer be built to deal with 
these calculations. 

John von Neumann, Professor of Math- 
ematics at the Institute for Advanced 
Study, was a consultant to Aberdeen and 
to Los Alarnos. For a whole host of 
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reasons, he had become seriously inter- 
ested in the thermonuclear problem being 
spawned at that time in Los Alamos by 
a friendly fellow-Hungarian scientist, Ed- 
ward Teller, and his group. Johnny (as he 
was affectionately called) let it be known 
that construction of the ENIAC was near- 
ing completion, and he wondered whether 
Stan Frankel and I would be interested 
in preparing a preliminary computational 
model of a thermonuclear reaction for the 
ENIAC. He felt he could convince the 
authorities at Aberdeen that our problem 
could provide a more exhaustive test of 
the computer than mere firing-table com- 
putations. (The designers of the ENIAC 
had wisely provided for the capability of 
much more ambitious versions of firing 
tables than were being arduously com- 
puted by hand, not to mention other quite 
different applications.) Our response to 
von Neumann's suggestion was enthusi- 
astic, and his heuristic arguments were 
accepted by the authorities at Aberdeen. 

In March, 1945, Johnny, Frankel, and I 
visited the Moore School of Electrical En- 
gineering at the University of Pennsylva- 
nia for an advance glimpse of the ENIAC. 
We were impressed. Its physical size 
was overwhelming-some 18,000 double 
triode vacuum tubes in a system with 
500,000 solder joints. No one ever had 
such a wonderful toy! 

The staff was dedicated and enthusi- 
astic; the friendly cooperation is still re- 
membered. The prevailing spirit was akin 
to that in Los Alamos. What a pity that a 
war seems necessary to launch such revo- 
lutionary scientific endeavors. The com- 
ponents used in the ENIAC were joint- 
army-navy (JAN) rejects. This fact not 
only emphasizes the genius of Eckert and 
Mauchly and their staff, but also suggests 
that the ENIAC was technically realizable 
even before we entered the war in Decem- 
ber, 1941. 

After becoming saturated with indoc- 
trination about the general and detailed 
structure of the ENIAC, Frankel and I re- 
turned to Los Alarnos to work on a model 

that was realistically calculable. (There 
was a small interlude at Alamogordo!) 
The war ended before we completed our 
set of problems, but it was agreed that we 
continue working. Anthony Turkevich 
joined the team and contributed substan- 
tially to all aspects of the work. More- 
over, the uncertainty of the first phase of 
the postwar Los Alamos period prompted 
Edward Teller to urge us not only to com- 
plete the thermonuclear computations but 
to document and provide a critical review 
of the results. 

The Spark. The review of the ENIAC 
results was held in the spring of 1946 
at Los Alamos. In addition to Edward 
Teller, the principals included Enrico Fer- 
mi, John von Neumann, and the Direc- 
tor, Norris Bradbury. Stanley Frankel, 
Anthony Turkevich, and I described the Stanislaw Ulam 
ENIAC, the calculations, and the con- 
clusions. Although the model was rel- dition, however, Stan's extensive mathe- 
atively simple, the simplifications were matical background made him aware that 
taken into account and the extrapolated statistical sampling techniques had fallen 
results were cause for guarded optimism into desuetude because of the length and 
about the feasibility of a thermonuclear tediousness of the calculations. But with 
weapon. this miraculous development of the 

Among the attendees was Stan Ulam, ENIAC-along with the applications Stan 
who had rejoined the Laboratory after must have been pondering-it occurred to 
a brief time on the mathematics faculty him that statistical techniques should be 
at the University of Southern California. resuscitated, and he discussed this idea 
Ulam's personality would stand out in with von Neumann. Thus was triggered 
any community, even where "characters" the spark that led to the Monte Carlo 
abounded. His was an informal nature; he method. 
would drop in casually, without the usual 
amenities. He preferred to chat, more or 
less at leisure, rather than to dissertate. 

The Method 

Topics would range over mathematics, 
physics, world events, local news, games 
of chance, quotes from the classics-all 
treated somewhat episodically but always 
with a meaningful point. His was a mind 
ready to provide a critical link. 

During his wartime stint at the Labora- 
tory, Stan had become aware of the elec- 
tromechanical computers used for implo- 
sion studies, so he was duly impressed, 
along with many other scientists, by the 
speed and versatility of the ENIAC. In ad- 

The spirit of this method was consis- 
tent with Stan's interest in random pro- 
cesses-from the simple to the sublime. 
He relaxed playing solitaire; he was stim- 
ulated by playing poker; he would cite 
the times he drove into a filled parking 
lot at the same moment someone was ac- 
commodatingly leaving. More seriously, 
he created the concept of "lucky num- 
bers," whose distribution was much like 
that of prime numbers; he was intrigued 
by the theory of branching processes and 
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contributed much to its development, in- 
cluding its application during the war to 
neutron multiplication in fission devices. 
For a long time his collection of research 
interests included pattern development in 
two-dimensional games played according 
to very simple rules. Such work has lately 
emerged as a cottage industry known as 
cellular automata. 

John von Neumann saw the relevance 
of Ulam's suggestion and, on March 11, 
1947, sent a handwritten letter to Robert 
Richtmyer, the Theoretical Division lead- 
er (see "Stan Ulam, John von Neumann, 
and the Monte Carlo Method"). His let- 
ter included a detailed outline of a pos- 
sible statistical approach to solving the 
problem of neutron diffusion in fission- 
able material. 

Johnny's interest in the method was 
contagious and inspiring. His seemingly 
relaxed attitude belied an intense interest 
and a well-disguised impatient drive. His 
talents were so obvious and his coopera- 
tive spirit so stimulating that he garnered 
the interest of many of us. It was at that 
time that I suggested an obvious name 
for the statistical method-a suggestion 
not unrelated to the fact that Stan had an 
uncle who would borrow money from rel- 
atives because he "just had to go to Monte 
Carlo." The name seems to have endured. 

The spirit of Monte Carlo is best con- 
veyed by the example discussed in von 
Neumann's letter to Richtmyer. Consider 
a spherical core of fissionable material 
surrounded by a shell of tamper material. 
Assume some initial distribution of neu- 
trons in space and in velocity but ignore 
radiative and hydrodynamic effects. The 
idea is to now follow the development 
of a large number of individual neutron 
chains as a consequence of scattering, ab- 
sorption, fission, and escape. 

At each stage a sequence of decisions 
has to be made based on statistical prob- 
abilities appropriate to the physical and 
geometric factors. The first two decisions 
occur at time t = 0, when a neutron is se- 
lected to have a certain velocity and a cer- 

tain spatial position. The next decisions 
are the position of the first collision and 
the nature of that collision. If it is deter- 
mined that a fission occurs, the number of 
emerging neutrons must be decided upon, 
and each of these neutrons is eventually 
followed in the same fashion as the first. 
If the collision is decreed to be a scatter- 
ing, appropriate statistics are invoked to 
determine the new momentum of the neu- 

John von Neumann 

tron. When the neutron crosses a material 
boundary, the parameters and characteris- 
tics of the new medium are taken into ac- 
count. Thus, a genealogical history of an 
individual neutron is developed. The pro- 
cess is repeated for other neutrons until a 
statistically valid picture is generated. 

Random Numbers. How are the vari- 
ous decisions made? To start with, the 
computer must have a source of uni- 
formly distributed psuedo-random num- 
bers. A much used algorithm for gener- 
ating such numbers is the so-called von 
Neumann "middle-square digits." Here, 
an arbitrary n-digit integer is squared, 
creating a 2n-digit product. A new in- 
teger is formed by extracting the middle 
n-digits from the product. This process 
is iterated over and over, forming a chain 

of integers whose properties have been 
extensively studied. Clearly, this chain 
of numbers repeats after some point. H. 
Lehrner has suggested a scheme based on 
the Kronecker-Weyl theorem that gener- 
ates all possible numbers of n digits be- 
fore it repeats. (See "Random-Number 
Generators" for a discussion of various 
approaches to the generation of random 
numbers.) 

Once one has an algorithm for generat- 
ing a uniformly distributed set of random 
numbers, these numbers must be trans- 
formed into the nonuniform distribution g 
desired for the property of interest. It can 
be shown that the function f needed to 
achieve this transformation is just the in- 
verse of the nonuniform distribution func- 
tion, that is, f = g l .  For example, neu- 
tron physics shows us that the distribution 
of free paths-that is, how far neutrons of 
a given energy in a given material go be- 
fore colliding with a nucleusÃ‘decrease 
exponentially in the interval (0, a). If x 
is uniformly distributed in the open inter- 
val (0, 1)' then f = - 1nx will give us a 
nonuniform distribution g with just those 
properties. 

The reader will appreciate many of the 
advantages of the Monte Carlo method 
compared to the methods of differen- 
tial equations. For example, a neutron- 
velocity spectrum with various peaks and 
valleys is difficult to handle mathemati- 
cally. For Monte Carlo one needs only 
to mirror the velocity spectrum in the 
probability distribution. Also, the Monte 
Carlo method is sufficiently flexible to ac- 
count for hydrodynamic effects in a self- 
consistent way. In an even more elabo- 
rate code, radiation effects can be dealt 
with by following the photons and their 
interactions (see "Monte Carlo at Work"). 

Clearly, applications of the Monte Car- 
lo method are much broader than so far 
outlined. (Although I emphasize the use 
of Monte Carlo in the study of phys- 
ical systems, random sampling is also 
an efficient way to evaluate complicated 
and many-dimensional integrals. For an 
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example, see the section entitled "The 
Monte Carlo Method" in "A Primer on 
Probability, Measure, and the Laws of 
Large Numbers.") Since its inception, 
many international conferences have been 
held on the various applications of the 
method. Recently, these range from 
the conference, "Monte Carlo Methods 
and Applications in Neutronics, Photon- 
ics, and Statistical Physics," at Cadarache 
Castle, France, in the spring of 1985 to 
the latest at Los Alarnos, "Frontiers of 
Quantum Monte Carlo," in September, 
1985. 

Putting the Method into Practice 

Let me return to the historical account. 
In late 1947 the ENIAC was to be moved 
to its permanent home at the Ballistics 
Research Laboratory in Maryland. What 
a gargantuan task! Few observers were 
of the opinion that it would ever do an- 
other multiplication or even an addition. 
It is a tribute to the patience and skill 
of Josh Gray and Richard Merwin, two 
fearless uninitiates, that the move was a 
success. One salutary effect of the inter- 
ruption for Monte Carlo was that another 
distinguished physicist took this occasion 
to resume his interest in statistical studies. 

Enrico Fermi helped create modem 
physics. Here, we focus on his inter- 
est in neutron diffusion during those ex- 
citing times in Rome in the early thir- 
ties. According to Emilio Segrk, Fermi's 
student and collaborator, "Fermi had in- 
vented, but of course not named, the 
present Monte Carlo method when he was 
studying the moderation of neutrons in 
Rome. He did not publish anything on 
the subject, but he used the method to 
solve many problems with whatever cal- 
culating facilities he had, chiefly a small 
mechanical adding machine."* 

In a recent conversation with Segrk, I 

*quoted with permission of W. H. Freeman and 
Company from From X-Rays to Quarks by Emilio 
Segr6. 

learned that Fermi took great delight in 
astonishing his Roman colleagues with 
his remarkably accurate, "too-good-to-be- 
lieve" predictions of experimental results. 
After indulging himself, he revealed that 
his "guesses" were really derived from 
the statistical sampling techniques that he 
used to calculate with whenever insomnia 
struck in the wee morning hours! And 
so it was that nearly fifteen years earlier, 
Fermi had independently developed the 
Monte Carlo method. 

Enrico Fermi 

It was then natural for Fermi, during 
the hiatus in the ENIAC operation, to 
dream up a simple but ingenious ana- 
log device to implement studies in neu- 
tron transport. He persuaded his friend 
and collaborator Percy King, while on a 
hike one Sunday morning in the moun- 
tains surrounding Los Alamos, to build 
such an instrument-later affectionately 
called the FERMIAC (see the accompa- 
nying photo). 

The FERMIAC developed neutron ge- 
nealogies in two dimensions, that is, in a 
plane, by generating the site of the "next 
collision." Each generation was based 
on a choice of parameters that charac- 
terized the particular material being tra- 

versed. When a material boundary was 
crossed, another choice was made appro- 
priate to the new material. The device 
could accommodate two neutron energies, 
referred to as "slow" and "fast." Once 
again, the Master had just the right feel 
for what was meaningful and relevant to 
do in the pursuit of science. 

The First Ambitious Test. Much to 
the amazement of many "experts," the 
ENIAC survived the vicissitudes of its 
200-mile journey. In the meantime Rich- 
ard Clippinger, a staff member at Ab- 
erdeen, had suggested that the ENIAC 
had sufficient flexibility to permit its con- 
trols to be reorganized into a more conve- 
nient (albeit static) stored-program mode 
of operation. This mode would have a 
capacity of 1800 instructions from a vo- 
cabulary of about 60 arithmetical and log- 
ical operations. The previous method of 
programming might be likened to a gi- 
ant plugboard, that is to say, to a can 
of worms. Although implementing the 
new approach is an interesting story, suf- 
fice it to say that Johnny's wife, Klari, 
and I designed the new controls in about 
two months and completed the implemen- 
tation in a fortnight. We then had the 
opportunity of using the ENIAC for the 
first ambitious test of the Monte Carlo 
method-a variety of problems in neu- 
tron transport done in collaboration with 
Johnny. 

Nine problems were computed corre- 
sponding to various configurations of ma- 
terials, initial distributions of neutrons, 
and running times. These problems, as 
yet, did not include hydrodynamic or ra- 
diative effects, but complex geometries 
and realistic neutron-velocity spectra 
were handled easily. The neutron histo- 
ries were subjected to a variety of statisti- 
cal analyses and comparisions with other 
approaches. Conclusions about the effi- 
cacy of the method were quite favorable. 
It seemed as though Monte Carlo was 
here to stay. 

Not long afterward, other Laboratory 
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staff members made their pilgrimages to 
ENIAC to run Monte Carlo problems. 
These included J. Calkin, C. Evans, and 
F. Evans, who studied a thermonuclear 
problem using a cylindrical model as well 
as the simpler spherical one. B. Suydam 
and R. Stark tested the concept of artifi- 
cial viscosity on time-dependent shocks; 
they also, for the first time, tested and 
found satisfactory an approach to hydro- 
dynamics using a realistic equation of 
state in spherical geometry. Also, the dis- 
tinguished (and mysterious) mathemati- 
cian C. J. Everett was taking an inter- 
est in Monte Carlo that would culminate 
in a series of outstanding publications in 
collaboration with E. Cashwell. Mean- 
while, Richtmyer was very actively run- 
ning Monte Carlo problems on the so- 
called SSEC during its brief existence at 
IBM in New York. 

In many ways, as one looks back, it 
was among the best of times. 

Rapid Growth. Applications discussed 
in the literature were many and varied 
and spread quickly. By midyear 1949 a 

symposium on the Monte Carlo method, 
sponsored by the Rand Corporation, the 
National Bureau of Standards, and the 
Oak Ridge Laboratory, was held in Los 
Angeles. Later, a second symposium was 
organized by members of the Statistical 
Laboratory at the University of Florida in 
Gainesville. 

In early 1952 a new computer, the MA- 
NIAC, became operational at Los Ala- 
mos. Soon after Anthony Turkevich led 
a study of the nuclear cascades that result 
when an accelerated particle collides with 
a nucleus. The incoming particle strikes 
a nucleon, experiencing either an elastic 
or an ineleastic scattering, with the latter 
event producing a pion. In this study par- 
ticles and their subsequent collisions were 
followed until all particles either escaped 
from the nucleus or their energy dropped 
below some threshold value. The "exper- 
iment" was repeated until sufficient statis- 
tics were accumulated. A whole series of 
target nuclei and incoming particle ener- 
gies was examined. 

Another computational problem run on 
the MANIAC was a study of equations 

THE FERMIAC 

The Monte Carlo trolley, or FERMIAC, was 
invented by Enrico Fermi and constructed 
by Percy King. The drums on the trolley 
were set according to the material being tra- 
versed and a random choice between fast 
and slow neutrons. Another random digit 
was used to determine the direction of mo- 
tion, and a third was selected to give the dis- 
tance to the next collision. The trolley was 
then operated by moving it across a two- 
dimensional scale drawing of the nuclear 
device or reactor assembly being studied. 
The trolley drew a path as it rolled, stopping 
for changes in drum settings whenever a 
material boundary was crossed. This infant 
computer was used for about two years to 
determine, among other things, the change 
in neutron population with time in numerous 
types of nuclear systems. 

of state based on the two-dimensional 
motion of hard spheres. The work was 
a collaborative effort with the Tellers, 
Edward and Mici, and the Rosenbluths, 
Marshall and Arianna (see "Monte Carlo 
at Work"). During this study a strategy 
was developed that led to greater com- 
puting efficiency for equilibrium systems 
obeying the Boltzmann distribution func- 
tion. According to this strategy, if a sta- 
tistical "move" of a particle in the sys- 
tem resulted in a decrease in the energy 
of the system, the new configuration was 
accepted. On the other hand, if there was 
an increase in energy, the new configu- 
ration was accepted only if it survived a 
game of chance biased by a Boltzmann 
factor. Otherwise, the old configuration 
became a new statistic. 

It is interesting to look back over two- 
score years and note the emergence, rather 
early on, of experimental mathematics, 
a natural consequence of the electronic 
computer. The role of the Monte Carlo 
method in reinforcing such mathematics 
seems self-evident. When display units 
were introduced, the temptation to exper- 

Los Alamos Science Special Issue 1987 



Monte Car10 

iment became almost irresistible, at least 
for the fortunate few who enjoyed the lux- 
ury of a hands-on policy. When shared- 
time operations became realistic, exper- 
imental mathematics came of age. At 
long last, mathematics bchieved a certain 
parity-the twofold aspect of experiment 
and theory-that all other sciences enjoy. 

It is, in fact, the coupling of the sub- 
tleties of the human brain with rapid 
and reliable calculations, both arithmeti- 
cal and logical, by the modem computer 
that has stimulated the development of 
experimental mathematics. This develop- 
ment will enable us to achieve Olympian 
heights. 

The Future 

So far I have summarized the rebirth 
of statistical sampling under the rubric 
of Monte Carlo. What of the future- 
perhaps even a not too distant future? 

The miracle of the chip, like most mir- 
acles, is almost unbelievable. Yet the fan- 
tastic performances achieved to date have 
not quieted all users. At the same time we 
are reaching upper limits on the comput- 
ing power of a single processor. 

One bright facet of the miracle is the 
lack of macroscopic moving parts, which 
makes the chip a very reliable bit of 
hardware. Such reliability suggests par- 
allel processing. The thought here is 
not a simple extension to two, or even 
four or eight, processing systems. Such 
extensions are adiabatic transitions that, 
to be sure, should be part of the im- 
mediate, short-term game plan. Rather, 
the thought is massively parallel opera- 
tions with thousands of interacting pro- 
cessors+ven millions! 

Already commercially available is one 
computer, the Connection Machine, with 
65,536 simple processors working in par- 
allel. The processors are linked in such 
a way that no processor in the array is 
more than twelve wires away from an- 
other and the processors are pairwise con- 
nected by a number of equally efficient 

routes, making communication both flex- 
ible and efficient. The computer has been 
used on such problems as turbulent fluid 
flow, imaging processing (with features 
analogous to the human visual system), 
document retrieval, and "common-sense" 
reasoning in artificial intelligence. 

One natural application of massive par- 
allelism would be to the more ambitious 
Monte Car10 problems already upon us. 
To achieve good statistics in Monte Car10 
calculations, a large number of "histories" 
need to be followed. Although each his- 
tory has its own unique path, the under- 
lying calculations for all paths are highly 
parallel in nature. 

Still, the magnitude of the endeavor 
to compute on massively parallel devices 
must not be underestimated. Some of the 
tools and techniques needed are: 

A high-level language and new archi- 
tecture able to deal with the demands 
of such a sophisticated language (to the 
relief of the user); 
Highly efficient operating systems and 
compilers; 
Use of modem combinatorial theory, 
perhaps even new principles of logic, 
in the development of elegant, compre- 
hensive architectures; 
A fresh look at numerical analysis and 
the preparation of new algorithms (we 
have been mesmerized by serial com- 
putation and purblind to the sophistica- 
tion and artistry of parallelism). 
Where will all this lead? If one were 

to wax enthusiastic, perhaps-just per- 
haps-a simplified model of the brain 
might be studied. These studies, in turn, 
might provide feedback to computer ar- 
chitects designing the new parallel struc- 
tures. 

Such matters fascinated Stan Ulam. He 
often mused about the nature of memory 
and how it was implemented in the brain. 
Most important, though, his own brain 
possessed the fertile imagination needed 
to make substantive contributions to the 
very important pursuit of understanding 
intelligence. 
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and the MONTE CARL0 METHOD 
by Roger Eckhardt 

T 
he Monte Carlo method is a sta- 
tistical sampling technique that 
over the years has been applied 
successfully to a vast number of 

scientific problems. Although the com- 
puter codes that implement Monte Carlo 
have grown ever more sophisticated, the 
essence of the method is captured in some 
unpublished remarks Stan made in 1983 
about solitaire. 

"The first thoughts and attempts I 
made to practice [the Monte Carlo 
method] were suggested by a question 
which occurred to me in 1946 as I was 
convalescing from an illness and play- 
ing solitaires. The question was what 
are the chances that a Canfield solitaire 
laid out with 52 cards will come out 
successfully? After spending a lot of 
time trying to estimate them by pure 

combinatorial calculations, I wondered 
whether a more practical method than 
"abstract thinking" might not be to 
lay it out say one hundred times and 
simply observe and count the number 
of successful plays. This was already 
possible to envisage with the begin- 
ning of the new era of fast computers, 
and I immediately thought of problems 
of neutron diffusion and other ques- 
tions of mathematical physics, and more 
generally how to change processes de- 
scribed by certain differential equations 
into an equivalent form interpretable 
as a succession of random operations. 
Later. . . [ in 1946, I ] described the idea 
to John von Neumann and we began to 
plan actual calculations." 

Von Neumann was intrigued. Statis- 
tical sampling was already well known 

in mathematics, but he was taken by 
the idea of doing such sampling using 
the newly developed electronic comput- 
ing techniques. The approach .seemed es- 
pecially suitable for exploring the behav- 
ior of neutron chain reactions in fission 
devices. In particular, neutron multiplica- 
tion rates could be estimated and used to 
predict the explosive behavior of the var- 
ious fission weapons then being designed. 

In March of 1947, he wrote to Rob- 
ert Richtmyer, at that time the Theoretical 
Division Leader at Los Alamos (Fig. 1). 
He had concluded that "the statistical ap- 
proach is very well suited to a digital 
treatment," and he outlined in some de- 
tail how this method could be used to 
solve neutron diffusion and multiplica- 
tion problems in fission devices for the 
case "of 'inert' criticality" (that is, ap- 
proximated as momentarily static config- 
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Fig. 1. The first and last pages of von Neumann's remarkable letter to Robert Richtmyer are shown above, as well as a portion of his tentative 
computing sheet. The last illustrates how extensivly von Neumann had applied himself to the details of a neutron-diffusion calculation. 
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urations). This outline was the first for- 
mulation of a Monte Carlo computation 
for an electronic computing machine. 

In his formulation von Neumann used a 
spherically symmetric geometry in which 
the various materials of interest varied 
only with the radius. He assumed that 
the neutrons were generated isotropically 
and had a known velocity spectrum and 
that the absorption, scattering, and fission 
cross-sections in the fissionable material 
and any surrounding materials (such as 
neutron moderators or reflectors) could be 
described as a function of neutron veloc- 
ity. Finally, he assumed an appropriate 
accounting of the statistical character of 
the number of fission neutrons with prob- 
abilities specified for the generation of 2, 
3, or 4 neutrons in each fission process. 

The idea then was to trace out the 
history of a given neutron, using ran- 
dom digits to select the outcomes of the 
various interactions along the way. For 
example, von Neumann suggested that 
in the compution "each neutron is rep- 
resented by [an 80-entry punched com- 
puter] card . . . which carries its character- 
istics," that is, such things as the zone of 
material the neutron was in, its radial po- 
sition, whether it was moving inward or 
outward, its velocity, and the time. The 
card also carried "the necessary random 
values" that were used to determine at the 
next step in the history such things as path 
length and direction, type of collision, ve- 
locity after scattering-up to seven vari- 
ables in all. A "new" neutron was started 
(by assigning values to a new card) when- 
ever the neutron under consideration was 
scattered or whenever it passed into an- 
other shell; cards were started for several 
neutrons if the original neutron initiated 
a fission. One of the main quantities of 
interest, of course, was the neutron mul- 
tiplication rate-for each of the 100 neu- 
trons started, how many would be present 
after, say, 1 0 " ~  second? 

At the end of the letter, von Neumann 
attached a tentative "computing sheet" 
that he felt would serve as a basis for 

setting up this calculation on the ENIAC. 
He went on to say that "it seems to me 
very likely that the instructions given on 
this 'computing sheet' do not exceed the 
'logical' capacity of the ENIAC." He es- 
timated that if a problem of the type he 
had just outlined required "following 100 
primary neutrons through 100 collisions 
[each]. . .of the primary neutron or its de- 
scendants," then the calculations would 
"take about 5 hours." He further stated, 
somewhat optimistically, that "in chang- 
ing over from one problem of this cate- 
gory to another one, only a few numeri- 
cal constants will have to be set anew on 
one of the 'function table' organs of the 
ENIAC." 

His treatment did not allow "for the 
displacements, and hence changes of ma- 
terial distribution, caused by hydrody- 
namics," which, of course, would have 
to be taken into account for an explo- 
sive device. But he stated that "I think 
that I know how to set up this problem, 
too: One has to follow, say 100 neu- 
trons through a short time interval At; 
get their momentum and energy trans- 
fer and generation in the ambient mat- 
ter; calculate from this the displacement 
of matter; recalculate the history of the 
100 neutrons by assuming that matter is 
in the middle position between its orig- 
inal (unperturbed) state and the above 
displaced (perturbed) state;. . . iterating in 
this manner until a "self-consistent" sys- 
tem of neutron history and displacement 
of matter is reached. This is the treat- 
ment of the first time interval At. When 
it is completed, it will serve as a basis 
for a similar treatment of the second time 
interval.. , etc., etc." 

Von Neumann also discussed the treat- 
ment of the radiation that is generated 
during fission. "The photons, too, may 
have to be treated 'individually' and sta- 
tistically, on the same footing as the neu- 
trons. This is, of course, a non-trivial 
complication, but it can hardly consume 
much more time and instructions than the 
corresponding neutronic part. It seems 

to me, therefore, that this approach will 
gradually lead to a completely satisfac- 
tory theory of efficiency, and ultimately 
permit prediction of the behavior of all 
possible arrangements, the simple ones as 
well as the sophisticated ones." 

And so it has. At Los Alamos in 1947, 
the method was quickly brought to bear 
on problems pertaining to thermonuclear 
as well as fission devices, and, in 1948, 
Stan was able to report to the Atomic 
Energy Commission about the applica- 
bility of the method for such things as 
cosmic ray showers and the study of the 
Hamilton Jacobi partial differential equa- 
tion. Essentially all the ensuing work on 
Monte Carlo neutron-transport codes for 
weapons development and other applica- 
tions has been directed at implementing 
the details of what von Neumann out- 
lined so presciently in his 1947 letter (see 
"Monte Carlo at Work"). 

I n von Neumann's formulation of the 
neutron diffusion problem, each neu- 

tron history is analogous to a single game 
of solitare, and the use of random num- 
bers to make the choices along the way 
is analogous to the random turn of the 
card. Thus, to carry out a Monte Carlo 
calculation, one needs a source of ran- 
dom numbers, and many techniques have 
been developed that pick random num- 
bers that are uniformly distributed on the 
unit interval (see "Random-Number Gen- 
erators"). What is really needed, how- 
ever, are nonuniform distributions that 
simulate probability distribution functions 
specific to each particular type of de- 
cision. In other words, how does one 
ensure that in random flights of a neu- 
tron, on the average, a fraction e *  
travel a distance x/ \  mean free paths or 
farther without colliding? (For a more 
mathematical discussion of random vari- 
ables, probability distribution functions, 
and Monte Carlo, see pages 68-73 of 
"A Tutorial on Probability, Measure, and 
the Laws of Large Numbers.") 

The history of each neutron is gener- 
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3ECISION POINTS 
IN MONTE CARL0 

Fig. 2. A schematic of some of the de- 
cisions that are made to generate the 
"history" of an individual neutron in a 
Monte Carlo calculation. The nonuniform 
random-number distributions g used in 
those decisions are determined from a 
variety of data. 

gr Determined from 
Properties of New Material 

g,, and gx Assumed 
from Initial Conditions 

gi Determined from 
Material Properties 

Crossing of 
Material Boundary 

/ \  Crossing of 
Material Boundary Collision 

Collision 

/ 
Scattering 

g,,, Determined from 
Scattering Cross Sections 

and Incoming Velocity 

Absorption 

g,, , gv; , gv; , . . . Determined 

from Fission Cross Sections 

ated by making various decisions about 
the physical events that occur as the neu- 
tron goes along (Fig. 2). Associated with 
each of these decision points is a known, 
and usually nonuniform, distribution of 
random numbers g that mirrors the prob- 
abilities for the outcomes possible for the 
event in question. For instance, return- 
ing to the example above, the distribu- 
tion of random numbers g~ used to de- 
termine the distance that a neutron trav- 

els before interacting with a nucleus is 
exponentially decreasing, making the se- 
lection of shorter distances more proba- 
ble than longer distances. Such a distri- 
bution simulates the observed exponen- 
tial falloff of neutron path lengths. Simi- 
larly, the distribution of random numbers 
gk used to select between a scattering, 
a fission, and an absorption must reflect 
the known probabilities for these differ- 
ent outcomes. The idea is to divide the 

unit interval (0,l)  into three subintervals 
in such a way that the probability of a 
uniform random number being in a given 
subinterval equals the probability of the 
outcome assigned to that set. 

In another 1947 letter, this time to Stan 
Ularn, von Neumann discussed two tech- 
niques for using uniform distributions of 
random numbers to generate the desired 
nonuniform distributions .g (Fig. 3). The 
first technique, which had already been 
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proposed by Stan, uses the inverse of the 
desired function f = g l .  For example, 
to get the exponentially decreasing distri- 
bution of random numbers on the interval 
(0, co) needed for path lengths, one ap- 
plies the inverse function f (x) = - lnx to 
a uniform distribution of random numbers 
on the open interval (0 , l ) .  

What if it is difficult or computation- 
ally expensive to form the inverse func- 
tion, which is frequently true when the 
desired function is empirical? The rest of 
von Neumann's letter describes an alter- 
native technique that will work for such 
cases. In this approach two uniform and 
independent distributions (xi) and fy') are 
used. A value x i  from the first set is 
accepted when a value y i  from the sec- 
ond set satisfies the condition yi  < f (x'}. 
where f ((-')d(- is the density of the de- 
sired distribution function (that is. g (x) = 

ff (x)dx). 
This acceptance-rejection technique of 

von Neumann's can best be illustrated 
graphically (Fig. 4). If the two numbers 
x i  and yi  are selected randomly from the 
domain and range, respectively, of the 
function f ,  then each pair of numbers rep- 
resents a point in the function's coordi- 
nate plane (xi ,  yi) .  When y i  > f (xi) the 
point lies above the curve for f (x), and x1 
is rejected; when y' < f (xi) the point lies 
on or below the curve, and xi  is accepted. 
Thus, the fraction of accepted points is 
equal to the fraction of the area below the 
curve. In fact, the proportion of points se- 
lected that fall in a small interval along 
the x-axis will be proportional to the av- 
erage height of the curve in that interval, 
ensuring generation of random numbers 
that mirror the desired distribution. 

A fter a series of "games" have been 
played, how does one extract mean- 

ingful information? For each of thou- 
sands of neutrons, the variables describ- 
ing the chain of events are stored, and this 
collection constitutes a numerical model 
of the process being studied. The collec- 
tion of variables is analyzed using sta- 

THE ACCEPTANCE-REJECTION 
METHOD 

Fig. 4. If two independent sets of random 

numbers are used. one of which ( x i )  ex- 

tends uniformly over the range of the distri- 

bution function f  and the other ({) extends 

over the domain of f ,  then an acceptance- 

rejection technique based on whether or not 

y i  < f(x) will generate a distribution for 
(2) whose density is f ( x i )  dx'. 

Reject xi since yi > f (xi). 

Accept x2 since y2 < f(x2). 

tistical methods identical to those used 
to analyze experimental observations of 
physical processes. One can thus extract 
information about any variable that was 
accounted for in the process. For exam- 
ple, the average energy of the neutrons at 
a particular time is calculated by simply 
taking the average of all the values gen- 
erated by the chains at that time. This 
value has an uncertainty proportional to 
^ / V / ( N ,  where V is the variance 
of, in this case, the energy and N is the 
number of trials, or chains, followed. 

It is, of course, desirable to reduce sta- 
tistical uncertainty. Any modification to 
the stochastic calculational process that 
generates the same expectation values but 
smaller variances is called a variance- 

reduction technique. Such techniques 
frequently reflect the addition of known 
physics to the problem, and they reduce 
the variance by effectively increasing the 
number of data points pertinent to the 
variable of interest. 

An example is dealing with neutron ab- 
sorption by weighted sampling. In this 
technique, each neutron is assigned a unit 
"weight" at the start of its path. The 
weight is then decreased, bit by bit at each 
collision, in proportion to the absorption 
cross section divided by the total collision 
cross section. After each collision an out- 
come other than absorption is selected by 
random sampling and the path is contin- 
ued. This technique reduces the variance 
by replacing the sudden, one-time process 
of neutron absorption by a gradual elim- 
ination of the neutron. 

Another example of variance reduction 
is a technique that deals with outcomes 
that terminate a chain. Say that at each 
collision one of the alternative outcomes 
terminates the chain and associated with 
this outcome is a particular value xc for 
the variable of interest (an example is 
xt being a path length long enough for 
the neutron to escape). Instead of col- 
lecting these values only when the chain 
terminates, one can generate considerably 
more data about this particular outcome 
by making an extra calculation at each 
decision point. In this calculation the 
know value x, for termination is multi- 
plied by the probability that that outcome 
will occur. Then random values are se- 
lected to continue the chain in the usual 
manner. By the end of the calculation, 
the "weighted values" for the terminat- 
ing outcome have been summed over all 
decision points. This variance-reduction 
technique is especially useful if the prob- 
ablity of the alternative in question is low. 
For example, shielding calculations typi- 
cally predict that only one in many thou- 
sands of neutrons actually get through the 
shielding. Instead of accumulating those 
rare paths, the small probabilities that a 
neutron will get through the shield on its 
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very next free flight are accumulated after 
each collision. 

T he Monte Carlo method has proven 
to be a powerful and useful tool. In 

fact, "solitaire games" now range from 
the neutron- and photon-transport codes 
through the evaluation of multi-dimen- 
sional integrals, the exploration of the 
properties of high-temperature plasmas, 
and into the quantum mechanics of sys- 
tems too complex for other methods. 

by Tony Warnock 

rs have applications in many as: simulation, game-playing, 
cryptography, statistical sampling, evaluation of multiple integrals, particle- 
transport calculations, and computations in statistical physics, to name a few. 

Since each application involves slightly different criteria for judging the "worthiness" 
of the random numbers generated, a variety of generators have been developed, each 
with its own set of advantages and disadvantages. 

Depending on the application, three types of number sequences might prove 
equate as m numbers.'' From a purist point of view. of course, a series of 
mbers ge a truly random process is most desirable. This type of sequence 

a random-number sequence, and one of the key problems is deciding whether 
or not the generating process is, in fact, random. A more practical sequence is the 
pseudo-random sequence, & series of numbers generated by a deterministic process 
that is intended merely to imitate a random sequence but which, of course, does not 
rigorously obey such things as the laws of large numbers (see page 69). Finally, a 1 
@St-randm sequence is a series of numbers that makes no pretense at being random 
but that has important predefined statistical properties shared with random sequences. 

Physical Random-Number Generators 1 
Games of chance are the classic examples of random processes, and the first 

inclination would to use traditional gambling devices as random-number generators. 
Unfortunately, these dev are rather slow, especially since the typical computer 
application may require ms of numbers per second. Also, the numbers obtained 

cards may be imperfectly shuffled, 
, and so forth. However, in the early 
digit table of random numbers using 
slots, of which 12 were ignored; the 

only because of our ignorance of initial 1 
terninistic Newtonian physics. Another 

advantage of the Heisenberg 
g decays of a radioactive 

h of these methods have been used to 
0th suffer the defects of slowness and 

order of magnitude than 

I 
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For instance, although each decay in a radioactive source may occur randomly 
and independently of other decays, it is not necessarily true that successive counts in 
the detector are independent of each other. The time it takes to reset the counter, 
for example, might depend on the previous count. Furthermore, the source itself 
constantly changes in time as the number of remaining radioactive particles decreases 
exponentially. Also, voltage drifts can introduce bias into the noise of electrical devices. 

There are, of course, various tricks to overcome some of these disadvantages. One 
can partially compensate for the counter-reset problem by replacing the string of bits 
that represents a given count with a new number in which all of the original 1-1 and 0-0 
pairs have been discarded and all of the original 0-1 and 1-0 pairs have been changed 
to 0 and 1, respectively. This trick reduces the bias caused when the probability of a 
0 is different from that of a 1 but does not completely eliminate nonindependence of 
successive counts. 

A shortcoming of any physical generator is the lack of reproducibility. Repro- 
ducibility is needed for debugging codes that use the random numbers and for making 
correlated or anti-correlated computations. Of course, if one wants random numbers 
for a cryptographic one-time pad, reproducibility is the last attribute desired, and time 
can be traded for security. A radioactive source used with the bias-removal technique 
described above is probably sufficient. 

Arithmetical Pseudo-Random Generators 

The most common method of generating pseudo-random numbers on the computer 
uses a recursive technique called the linear-congruential, or Lehmer, generator. The 
sequence is defined on the set of integers by the recursion formula 

xn+i = Axn + C (mod M ). 

where xn is the nth member of the sequence, and A, C ,  and M are parameters that can 
be adjusted for convenience and to ensure the pseudo-random nature of the sequence. 
For example, M,  the modulus, is frequently taken to be the word size on the computer, 
and A, the multiplier, is chosen to yield both a long period for the sequence and good 
statistical properties. 

When M is a power of 2, it has been shown that a suitable sequence can be 
generated if, among other things, C is odd and A satisfies A = 5 (mod 8) (that is, A - 5 
is a multiple of 8). A simple example of the generation of a 5-bit number sequence 
using these conditions would be to set M = 32 (5 bits), A = 21, C = 1, and xo = 13. 
This yields the sequence 
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and 

yield 

Of course, if Seq. 3 is carried out to many places, a pattern in it will also become 
apparent. To eliminate the new pattern, the sequence can be XOR'ed with a third 
pseudo-random sequence of another type, and so on. 

This type of hybrid sequence is easy to generate on a binary computer. Although 
for most computations one does not have to go to such pains, the technique is especially 

attractive for constructing "canonical" generators of apparently random numbers. 
A key idea here is to take the notion of randomness to mean simply that the 

sequence can pass a given set of statistical tests. In a sequence based on normal 
numbers, each term will depend nonlinearly on the previous terms. As a result, there 
are nonlinear statistical tests that can show the sequence not to be random. In particular, 
a test based on the transformations used to construct the sequence itself will fail. But, 
the sequence will pass all linear statistical tests, and, on that level, it can be considered 
to be random. 

What types of linear statistical tests are applied to pseudo-random numbers? 
Traditionally, sequences are tested for uniformity of distribution of single elements, 
pairs, triples, and so forth. Other tests may be performed depending on the type of 
problem for which the sequence will be used. For example, just as the correlation 
between two sequences can be tested, the auto-correlation of a single sequence can be 
tested after displacing the original sequence by various amounts. Or the number of 
different types of "runs" can be checked against the known statistics for runs. An 
increasing run, for example, consists of a sequential string of increasing numbers 
from the generator (such as, 0.08, 0.21, 0.55, 0.58, 0.73, . . .). The waiting times 
for various events (such as the generation of a number in each of the five intervals 
(0,0.2), (0.2,0.4), . . . , (0.8,l)) may be tallied and, again, checked against the known 
statistics for random-number sequences. 

If a generator of pseudo-random numbers passes these tests, it is deemed to be a 
"good" generator, otherwise it is "bad." Calling these criteria "tests of randomness" is 
misleading because one is testing a hypothesis known to be false. The usefulness of 
the tests lies in their similarity to the problems that need to be solved using the stream 
of pseudo-random numbers. If the generator fails one of the simple tests, it will surely 
not perform reliably for the real problem. (Passing all such tests may not, however, be 
enough to make a generator work for a given problem, but it makes the programmers 
setting up the generator feel better.) 
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Early Work in Numerical Hydrodynamics
by Francis H. Harlow

I met Stan Ulam shortly after coming
to Los Alamos in 1953. As an ea-
ger youngster chasing new dreams,
I was inspired and encouraged (and

sometimes properly chastised) by the old-
er resident scientists and Laboratory con-
sultants. Several stand out especially
for their powerful encouragement; one of
these is Stan.

Some of my associates, especially dur-
ing the first six years, didn’t like many of
my wild ideas about fluid dynamics and
the techniques for solving such problems
by high-speed computers. Stan continu-
ally took the time to see what was going
on and had the faith (not always justi-
fied) to tell others positive things about
my explorations. I shall always be grate-
ful for Stan’s, as well as Conrad Long-
mire’s, crucial influence in establishing
our fluid dynamics group in the Theoret-
ical Division.

Stan and I had many talks, especially
on the stochastic behavior of complex
systems. He seemed to feel how these
systems worked: their collective prop-
erties were very real to him. He was
intrigued by the almost-cyclic properties
they sometimes could exhibit and par-
ticipated in pioneering numerical exper-
iments on fluid-like, many-particle dy-
namics.

His early work with John Pasta* cre-
ated the grandaddy of the free-Lagrangian
method of modeling turbulence and, in
the sixties, led ultimately to the Particle-
and-Force technique for the calculation
of shock formation and interaction prob-
lems. Although couched in terms of hy-
drodynamics, the pioneering work has
had significant impact on many branches
of numerical analysis, especially in terms
of the interpretation and meaning of re-
sults. The main thrust of their thinking is

captured in the following excerpts.

“Our approach to the problem of
dynamics of continua can be called
perhaps “kinetic’ ’-the continuum is
treated, in an approximation. as a col-
lection of a finite number of elements
of “points;” these “points” can represent
actual points of the fluid, or centers of
mass of zones, i.e., globules of the fluid,
or, more abstractly, coefficients of func-
tions, representing the fluid, developed
into series. ”

One of the motivations behind the free-
Lagrangian approach was the computa-
tional difficulties for fluid flow with large
internal shears in which elements that
were initially close later found themselves
widely separated.

“It was found impractical to use a
“classical” method of calculation for
this hydrodynamical problem, involving
two independent spatial variables in
an essential way . . . . This “classical”
procedure, correct for infinitesimal steps
in time and space, breaks down for
any reasonable (i.e., practical) finite
length of step in time. The reason is,
of course, that the computation
assumes that “neighboring” points,
determining a “small” area—stay as
neighbors for a considerable number
of cycles. It is clear that in problems
which involve mixing specifically this
is not true . . the classical way of
computing by referring to initial (at
time t = O) ordering of points becomes
meaningless. ”

The next point is one that Stan empha-
sized repeatedly, illustrating what he felt
to be a potential power of their approach.

“The meaningful results of the cal-
culations are not so much the precise
positions of our elements themselves as
the behavior, in time, of a few function-
al of the motion of the continuum.

“Thus in the problem relating to
the mixing of two fluids, it is not the
exact position of each globule that is
of interest but quantities such as the
degree of mixing (suitably defined);
in problems of turbulence, not the
shapes of each portion of the fluid, but
the overall rate at which energy goes
from simple modes of motion to higher
frequencies.”

As it turned out, the behavior, in time,
of the functional of the motion that they
calculated was very smooth despite the
complicated, turbulent nature of the flu-
id’s motion. Thus, an important perspec-
tive on the modeling of complex phe-
nomenon had been established. Indeed,
turbulence transport theory, the subject
of the following article, depends upon
the strong tendencies in nature towards
universal behavior that are the basis for
the observed smoothness in their func-
tional. This theory is an excellent ex-
ample of Stan’s idea that wonderful nu-
merical results can emerge from averag-
ing discrete-representations over a set of
possible scale sizes. But the theory goes
further in providing an analytic formula-
tion of turbulence transport.

Stan lived to see the realization of some
of his ideas—others are still being inves-
tigated—but I always had confidence that
if Stan had a feeling for something, it was
sure to be significant. He was a friend I
shall long remember. ■

“John Pasta and Stan Ulam. 1953. Heuristic studies
in problems of mathematical physics on high speed
computing machines, Los Alamos report LA-1557.

144 Los Alamos Science Special Issue 1987



by Didier Besnard, 
Francis H. Harlow, 

Norman L. Johnson, 
Rick Rauenzahn, 

and Jonathan Wove 

hen the interface between two materials experiences strong accelerative 
or shearing forces, the inevitable results are instability, turbulence, and 
the mixing of materials, momentum, and energy. One of the most impor- 
tant and exciting breakthroughs in our understanding of these disruptive w 

processes has been the recent discovery that the features of the processes often are 
independent of the initial interface perturbations. This discovery is so important that 
scientists at Los Alamos National Laboratory, the California Institute of Technology, 
the Atomic Weapons Research Establishment in Great Britain, Lawrence Livermore 
National Laboratory, as well as scientists in France, and no doubt in the Soviet Union, 
are working hard to confirm and extend this new understanding experimentally. 

Theoretical analyses are likewise showing a firm basis for this astonishing dis- 
covery. Two types of theory are being employed, gradually combined, and even 
proved essentially equivalent. These are the multifield-interpenetration approach and 
the single-field turbulence approach. Even brute-force hydrodynamics calculations are 
demonstrating this same property of independence from initial perturbation. 

The consequences for developments in such main-line Laboratory projects as 
inertial-confinement fusion are profound. Our entire view of material mixing, tur- 
bulence shear impedance, and energy transport has undergone a revolutionary shift to 
qualitatively different directions. 

What is the physical essence of this new way of thinking? No matter how 
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TURBULENCE EFFECTS 

Fig. 1. The effects of turbulence include in- 
creased mixing of initially separated materi- 
als, an increase in shear impedance of fluid 
near rough boundaries due to the turbulent 
viscosity, and increased transport of heat 
into surrounding cooler regions. 

Increased Mixing of Materials 

Increased Heat Diffusion 

carefully we attempt to achieve smoothness and homogeneity, any sufficiently strong 
destabilizing influence at a material discontinuity will inevitably be disruptive. Indeed, 
the disruptive effects will be manifested in essentially the same manner as if there were 
a considerable roughness or inhomogeneity at or near the interface. Add to this the 
effects of any long-wavelength asymmetries, and we have an immutable inevitability 
for major instabilities in virtually every experimental circumstance of accelerative or 
shearing dynamics of interest to the Laboratory. Reliable predictability of new weapons 
designs in a comprehensive test ban, the design of any locally intense energy source, the 
development of workable concepts in Strategic Defense, the achievement of successful 
inertial-confinement fusion devices, and the success of many other Laboratory programs 
will depend crucially on our ability to model these instability and turbulence effects 
realistically. 

What Is Turbulence? 

To describe the techniques we are using to model these effects, we must first 
consider in more detail the properties of turbulence itself. Turbulence is the random 
fluctuation in fluid motion that often is superimposed on the average course of the 
flow. The effects of turbulence can be highly significant (Fig. l), increasing the fluid's - " i ~ " 6 '  effective viscosity and enhancing the mixing of initially separated materials, such as the -/- mixing of dust into air or bubbles into a liquid. Turbulence is a significant factor in the 
wind resistance of a vehicle, in the dispersal of fuel droplets in an internal combustion 

Increased Shear Impedance engine, in mixing and transporting materials in chemical plants, indeed in virtually 

every circumstance of high-speed fluid flow. 
It is easy to be deceived into thinking that turbulence is rare, because it often 

is not directly visible to the casual observer. Although water flowing rapidly through 
a transparent pipe may look completely smooth, touching the pipe can reveal large 
vibrations and the injection of dye through a tiny hole in the wall can demonstrate rapid 
downstream mixing. Both effects are a direct result of intense turbulent fluctuations. 

Turbulence in air can be demonstrated-even in a relatively calm room-by 
holding one end of a long thread and watching its fluctuating response to air currents. 
Sunshine streaming over the top of a hot radiator creates shadow patterns on a nearby 
wall that dance restlessly in the never-ending turbulence that accompanies the upward 
flow of air. 

Why is nature discontent with the smooth and peaceful flow of liquids and gases, 
especially at high flow speeds? What are the processes that feed energy into turbulent 
fluctuations? The answers lie in the behavior of energy. In contrast to momentum, 
energy has the peculiar ability to assume numerous and varied configurations. Momen- 
tum constraints, while restrictive, are helpless to prevent seemingly capricious energy 
rearrangements. In any real fluid flow, these rearrangements are triggered by inevitable 
perturbations that can be fed from the reservoir of mean-flow energy. 

It is helpful at this point to compare turbulence with the random motion of simple 
gas molecules in a box because the approaches to both of these problems include much 
that is similar. However, the analogy becomes seriously misleading if pushed too far. 

Molecular Systems. In a box of molecules the dynamics of each individual can 
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be described quite accurately by Newton's laws. Yet we seldom try to analyze the 
complex interactions of all the trajectories, which are seemingly capable of very chaotic 
behavior. Instead, we appeal to the remarkably organized mean properties of the motion, 
identifying such useful variables as density, pressure, temperature, and fluid velocity. 

We cannot ignore the departure of the individual from the behavior of the mean; 
indeed, some of the most interesting properties of the gas are directly associated 
with these departures. Diffusion of heat energy, for example, represents transport of 
kinetic energy by fluctuations; pressure in a "stationary" gas is the result of continual 
bombardment of molecules against objects immersed in the gas (Fig. 2(a)); viscous 
drag between two opposing streams of gas (Fig. 2(b)) arises because of fluctuations 
from the mean-flow velocity that cause molecules to migrate from one stream to the 
other. 

Turbulent Eddies and Mean Flow. Turbulent eddies in a fluid superficially resem- 
ble individual molecules in a gas. They likewise bounce around in random fashion, 
carrying kinetic energy in their fluctuational velocities. (Such turbulence kinetic energy 
is typically as much as 10 per cent of the mean-flow kinetic energy, or even more in 
regions where the mean flow stagnates at a solid surface.) Eddies also diffuse mo- 
mentum (plus heat and any imbedded materials), exerting pressure through momentum 
transport and bombardment against walls. 

But the concept of a turbulent eddy is nebulous at best. Gas molecules have an 
easily identifiable shape, size, mean separation, and mean free path between collisions. 

Turbulent eddies, in contrast, have a spectrum of sizes; they overlap each other; the 
constraint on their motion through the fluid by the immediate presence of neighboring 
fluid precludes the simple concept of a mean free path. 

Moreover, identification of what part of the dynamics is turbulence and what part 
is mean flow is arbitrary. For molecules the distinction is essentially unique; in most 
circumstances, individual molecular fluctuations take place on a scale that is orders of 
magnitude smaller than the scale of collective, fluid-like motion. For turbulent eddies 
the fluctuational scale may be an appreciable fraction of the mean-flow scale. More 
to the point, the observer's experimental configuration itself establishes the distinction 
between turbulence and mean flow. 

To put the matter succinctly, mean flow is that part of the dynamics directly 
associated with the macroscopic conditions established or measured by the observer, 
whereas turbulence is the more capricious part of the flow associated with finer-scaled 
perturbations not controlled by the observer but inevitably present in any real flow. 

As an example, consider air flow around a parked automobile on a gusty day. With 
suitable instruments an observer can record variations in the approaching wind velocity. 
These measurements describe the source of the mean flow, and the macroscopic features 
of the car constitute the boundary conditions. Mean-flow patterns in the wake on the 
downwind side of the vehicle can be observed either with a ribbon that stretches out 
with the average air velocity at each place it is held or with an upstream smoke generator 
emitting a thin filament of smoke that can be photographed as it passes over the car. 

Both the ribbon and the filament have an average direction to their motion that 
varies on the same time scale as that of the monitored gusts of wind; the relationship 
between these two features is the correlation that our investigator is seeking. In addition, 

MOMENTUM FLUX 

Fig. 2. (a) The pressure on a wall is the 
result of the transfer of momentum during 
collisions between individual molecules and 
the wall. (b) Viscous drag between two op- 
posing streams 01 gas is a result 01 individ- 
ual departures from the mean-flow velocity 
in each stream. More precisely, pressure 

and viscous drag represent the normal flux 
through any imaginary surface of the normal 
and the tangential components of momen- 
tum, respectively. 

Mole 
Trajectories 1 

Pressure on a Wall 

viscous Drag 

Flow 
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TANGENTIAL DRAG 

Fig. 3. Fluid moving in a circular trough 

loses mean-flow kinetic energy because of 
tangential drag on the walls. Although this 
entire loss in energy will eventually appear 
as heat, a significant fraction may first ap- 
pear as the kinetic energy of turbulence. 

however, the ribbon flutters rapidly about that average (at the rate of many fluctuations 
per second), and the smoke filament diffuses in contorted kinks into the surrounding 
air. This capricious variation around the time-varying average is what our observer 
calls turbulence. 

A second observer standing nearby, but paying no attention to the detailed obser- 
vations of the first, feels buffeted by the gusts and, likewise, would agree that there is 
much turbulence. However, this observer can legitimately disagree as to which part of 
the air flow is mean flow and which part is turbulence, seeing an average southwesterly 
wind with turbulent variations that last several seconds. Meanwhile, an earth-orbiting 
satellite reveals that the southwesterly wind is simply a momentary fluctuation (of a 
half hour or so) from the general westerlies crossing the continent that day. 

This example has three different fluctuational scales, all properly identified as 
turbulence on the basis of the observer's chosen viewpoint. The difference, however, 
is not merely one of semantics, and we discuss below the consequences of this multiple 
viewpoint to mathematical modeling of the flow processes. Important guidance is 
furnished by a careful consideration of interactions among the various dynarnical scales. 

There is thus a seemingly random nature to both molecular dynamics and turbu- 
lence. The detailed flow field of a group of molecules or eddies can vary by large 
amounts as a result of minor initial perturbations on a microscopic scale. But the re- 
markable feature of these dynamical systems is that the overall stochastic behavior is 
essentially independent of the manner in which the fluctuations are introduced. 

However, not every fluid flow is sensitive to minor perturbations. Viscous or 
slowly moving fluids travel in a purely laminar fashion, responding negligibly to fine- 
scale perturbations. Why does flow remain stable for some conditions and exhibit 
turbulence for others? The answer lies in the ways in which energy is drawn from the 
mean flow as the motion gradually decays to quiescence. 

Turbulence Energy: Sources and Sinks 

The statements of mass, momentum, and energy conservation lie at the foundations 
of fluid dynamics. In particular, fluid flow implies the presence of energy, which can 
exist in any of various forms: kinetic, heat, turbulence, potential, chemical. For the 
moment we are concerned only with the first three. By kinetic energy we mean the 
motion energy carried by the mean flow; heat energy refers to the kinetic energy of 
molecular fluctuations. Turbulence energy is at a scale between these first two: it is 
the kinetic energy of fluctuations that are large compared with the individual molecular 
scale but small compared with the mean-flow scale. 

As we said earlier, in contrast to mass and momentum, which are highly constrained 
by their conservation laws, energy behaves very capriciously. Although total energy 
is rigorously conserved, transitions among the many manifestations of energy occur 
continuously. It is a remarkable fact of nature that, as a result of such transitions, any 
system devoid of remedial influences inevitably tends to move from order to disorder. 
An egg hitting the floor turns to a mess as ordered kinetic energy is converted into splat. 
Cars break down, rust, and eventually end up as nondescript piles of metallic and organic 
compounds blowing in the wind or leached by groundwater into a progressively wider 
and less ordered distribution. Fluids in a nicely ordered state of mean flow likewise 
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ENERGY DEGRADATION 
v 

Kinetic Energy 

I - 1 
Fig. 4. The mean-flow kinetic energy of a 

Mean-Flow fUneti0 Energy moving fluid inevitably degrades to thermal 
energy. Frequently, however, part of that 
kinetic energy is first transformed to kinetic 
energy of turbulence. 

tend toward (mass- and momentum-conserving) states of disordered energy in which 
the only residuum is heat-and even that leaks off to the less ordered state of wide 
dispersal as a result of conduction and radiation. In thermodynamics, the trend from 
order to disorder is called the Second Law; its profound scientific and philosophical 
implications have been discussed and debated for many decades; its validity is beyond 
doubt. 

Consider a fluid that has been set into smooth and uniform motion in a circular 
trough (Fig. 3). It has zero total (vector) momentum: as much is moving east as is 
moving west at every instant. Tangential shearing drag on the walls slows the motion 
so that mean-flow kinetic energy is lost. Where does the energy g o ~ t o  turbulence or 
to heat? The competition is fierce, and heat always wins in the end, but fluids yield 
themselves to the inevitable only grudgingly. If at all possible, they transform at least 
part of their kinetic energy to turbulence as an intermediate step along the way (Fig. 4). 

Let's replace this animistic description with physics. The conversion of mean- 
flow kinetic energy directly to heat is limited by the viscosity of the fluid and by the 
steepness of the mean-flow velocity gradients. For example, consider fluid flow between 
two plates moving in parallel but opposite directions (Fig. 5). Although a variety of 
flow-velocity profiles could have been depicted, the one shown has the smallest fluid 
kinetic energy of any flow profile with that same momentum between the moving plates. 
This profile is thus the flow distribution to which all others inevitably tend. 

Suppose we now examine a flow profile at the opposite extremeÃ‘on in which 
the gradient at the midpoint between the plates is very sharp (Fig. 6(a)). Both this 
distribution and the stable one in Fig. 5 have the same total fluid momentum (namely 
zero); however, in the distribution in Fig. 6(a), every fluid element has the same speed 
(uo), whereas in the stable distribution, most elements are moving slower than uo. Thus 
the fluid in Fig. 6(a) possesses an excess of kinetic energy compared to the fluid with 

STABLE FLOW BETWEEN 

MOVING PLATES 

Fig. 5. When fluid is trapped between two 
plates moving at speed UQ in parallel but op- 
posite directions, a gradient in fluid veloc- 
ity is established. The linear flow-velocity 
profile shown here has the smallest kinetic 

energy of any profile at that same total rno- 
rnentum for the given boundary conditions. 

+ 
Linear - Velocity - Profile 

the stable profile and will lose part of this energy as it transforms toward the stable 
configuration. Will turbulence be an intermediate state in this evolution? To answer 
this question we must dig deeply into the competitive processes of dissipation and 
instability. 
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UNSTABLE FLOW 

Fig. 6. A discontinuity in the velocity pro- 
file between two oppositely moving fluid re- 

gions can lead to a Kelvin-Helmholtz insta- 
bility at that interface, resulting in turbu- 
lence. For example, if, as in (b), the inter- 
face experiences a sinusoidal perturbation 
of wavelength \ and amplitude A, such a 
perturbation will act effectively as a series of 
Venturi nozzles (c) that alter the mean-flow 
velocities and pressure p. These pressure 

variations, in turn, further increase the dis- 
tortion. 

Ã‘Ã‘Ã‘Ã‘Ã 
Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘ 

Ã̂‘Ã‘Ã‘Ã 
<Ã‘Ã‘Ã‘Ã‘ Discontinuity 
*Ã‘Ã‘Ã‘Ã in Velocity Profile 
.Ã‡Ã‘Ã‘Ã‘Ã‘Ã‘ 

Consider first the dissipation of mean-flow kinetic energy into heat. Let H be heat 
energy per unit volume and dufdy describe some measure of the mean-flow velocity 
gradient in a fluid with molecular viscosity b. Then the rate at which heat is generated 
is given by 

dH 

To estimate the rate at which turbulence energy is generated, we return to the flow 
described in Fig. 6(a), which is susceptible to a destabilizing process called the Kelvin- 
Helmholtz instability. The presence of such an instability is easily demonstrated for an 
incompressible fluid if we arbitrarily assume that the slip interface between the upper 
and lower halves of the flow profile is distorted by a sinusoidal wave of wavelength 
A and amplitude A (Fig. 6(b)). Because the fluid is incompressible, wherever the flow 
area is constricted the fluid has to move faster than average, and wherever the flow 
area is expanded the fluid has to move more slowly (Fig. 6(c)). What is the associated 
behavior of the pressure? Each cycle in the perturbation is like a Venturi nozzle, for 
which Bernoulli's law says the pressure is less in the constricted region where fluid 
speed is higher and is greater in the expanded region where fluid speed is lower. Thus, 
there is a pressure difference across the perturbed slip plane, acting in exactly the right 
direction to enhance the perturbation amplitude. 

More formally, we can associate an appropriate inertia with the material being 
accelerated (the acceleration of the perturbation in the slip plane is d^/dt2), and we can 
use Bernoulli's law to calculate the pressure difference (the driving force for enhancing 
the perturbation), which is proportional to the square of the fluid speed uk. Newton's 
second law then leads to the following formula for the behavior of the perturbed slip 
plane: 

(b) -<Ã‘Ã‘Ã‘Ã A Ã‘Ã‘Ã‘Ã‘Ã 

The growth in amplitude is dA/dt, so the kinetic energy per unit volume involved in 
this turbulent-like motion is 

where p is the density of the fluid. Differentiating Eq. 3 and substituting Eq. 2, we see 
that turbulence energy K ,  in turn, grows as 

-Ã‡Ã‘ 
LOW D 

With w = (27ruo/A), a solution of Eq. 2 is A = Ayewt, and 

(6) 
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The essence of these results is that d K / d t  increases with time (UJ is positive), whereas, 
because viscosity smears out the sharp velocity transition, thus decreasing du /dy ,  
dH /dl  decreases with time (Eq. 1). Whenever the amplitude (scale) of the disturbance 
is large enough, turbulence creation will dominate. 

The important dimensionless quantities involved in the competition between tur- 
bulence energy creation and heat dissipation can be illustrated by taking the ratio of 
the growth rates of turbulence energy and heat energy at t = 0. Using Eqs. 1 and 6 and 
setting du/dy w 2u0/A at t = 0 we find 

Local Initial 
Reynolds Pertur- 
Number bation 

where Ay/X can be thought of as a measure of the extent of the initial perturbation. 
The appearance in this equation of the local Reynolds number is not surprising, given 
that the number is a measure of the competition between the inertial and viscous effects 
in any flow (see "Reynolds Number"). 

As long as dH felt dominates, the mean-flow kinetic energy dissipates to heat, and 
the intermediate turbulent stage is bypassed; we say that the mean flow is stable. 
If d K / d t  dominates, then the mechanism driving the instability draws the excess 
kinetic energy into turbulence. We can thus formulate a stability criterion, based on 
the Reynolds number, in which molecular viscosity plays a central role. For large 
viscosity, dH /dt  is able to exactly balance the loss rate for mean-flow kinetic energy. 
Decreasing the viscosity eventually drops dH /dt  below the mean-flow loss rate, and 
the flow becomes unstable. 

As a corollary, note that conservation of total energy raises an interesting question 
about mean-flow dynamics. What mechanism accounts for destruction of mean-flow 
kinetic energy at exactly the required rate to ensure conservation? The answer is 
viscosity-molecular viscosity and turbulence viscosity. 

For the case of only direct viscous dissipation to heat, viscous drag between the 
opposing currents causes each to slow down, and the corresponding loss rate for kinetic 
energy exactly accounts for the dissipative heating. For the case of transfer of mean-flow 
kinetic energy to turbulence, a directly analogous process occurs in which turbulence 
viscosity produces drag. More precisely, the presence of turbulence induces a fluid 
shear stress, the Reynolds stress, that is independent of the molecular viscosity of the 
fluid. Expression of the components of the Reynolds stress tensor in terms of readily 
measured flow quantities (such as pressure and mean-flow velocity) lies at the heart of 
our theoretical work and is discussed in detail in the next section. 

Analogous to molecular viscosity, turbulence viscosity depletes mean-flow kinetic 
energy at precisely the same rate that turbulence energy is growing. A direct conse- 
quence is that turbulence contributes to the effective viscosity of the fluid, enhancing the 
rate of momentum diffusion from one part of the fluid to another as it simultaneously 
destroys the excess mean-flow kinetic energy. As we shall see, turbulence diffuses 
anything imbedded in the fluid-momentum, heat, dye, dust particles, dissolved salts. 
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Number 

o design and test proposed large- 
scale equipment, such as airfoils or 
entire aircraft, it is often much more T 

practical to experiment with scaled-down 
versions. If such tests are to be success- 
ful, however, dynamic similitude must 
ex& between model and field equipment, 
whish, in turn, implies that geometric, in- 
e r t i a  and kinematic similitude must ex- 
ist. 

The Navier-Stokes equations (Eqs. 9 
and 10 in the main text) are a good start- 
ing point for deriving the relationships 
needed to establish dynamic similitude. 
First, we look at the case of laminar flow. 
IgHQH&g body force and pressure effects, 

examine the momentum conservation 
relationship for steady, laminar, incom- 
pcessible, two-dimensional flow, equating 
j@&? advection and diffusion terms in 
fh& x-metion: 

@.y - .- QVu d2u d2u -+- = [z+-] . ( I )  
& B y  d y  
Advection Diffusion 

Here u and v are the x and y compo- 
nents of the velocity and urn is the molec- 
ular kinematic viscosity (the ratio of fluid 
viscosity to fluid density d p ) .  Advec- 
tion has to do with kinematic effects, that 
is, the transport of fluid properties by the 
motion of the fluid, and thus accounts for 
momentum transport along streamlines; 
the diffusion terms represent viscous ef- 
fects that cause momentum to diffuse be- 
tween streamlines, thereby tending to di- 

mulish any sharp velocity gradients. 
We can write Eq. 1 in dimensionless 

form by introducing a length scale L and 
a fluid velocity in the free stream UO. The 
result is 

where the highlighted variables are di- 
mensionless. This portion of the momen- 
turn equation can thus be uniquely char- 
acterized by the ratio of the coefficients 
multiplying the dimensionless advection 
and diffusion terms. The ratio, called the 
Reynolds number 

can be thought of as a comparative mea- 
sure of inertial and viscous (diffusive) ef- 
fects within the flow field. To achieve dy- 
namic similitude in two different laminar- 
flow situations, the Reynolds numbers for 
both must be identical. 

What happens if we increase the flow 
speed to the point that viscous dissipa- 
tion can no longer stabilize the flow, and 
the macroscopic balance between mean- 
flow inertia and viscous effects breaks 
down? At this point there is a transition 
from purely laminar flow to turbulence. 
In similar flows, the transition occurs at 
a specific Reynolds number characteris- 
tic of the flow geometry. For instance, 
any fluid traveling inside a circular pipe- 
regardless of the specific fluid or conduit 

being used-experiences the onset of tur- 
bulence at R %' 2000. 

At or near this "critical" Reynolds num- 
ber, inertial contributions to mean-flow 
momentum that cannot be dissipated by 
viscous stresses must be absorbed by new- 
ly formed turbulent eddies. The pres- 
ence of turbulence energy is often de- 
scribed in terms of an effective turbulence 
viscosity ut, defined as the ratio of the 
turbulence-shear, or Reynolds, stress to 
the mean-flow strain rate. With this in 
mind, an effective turbulence Reynolds 
number-one that includes molecular vis- 
cous effects-is 

d -7 

uoL ,&$- ReE = - . - ' (4) 
Ut + Vm % 

>hi 

Molecular viscous effects are overwhelm- 
ed if V, Ã urn In those instances the 
exact value of the kinematic viscosity vm 
is immaterial, and flow behavior is dom- 
inated by turbulence effects. 

Although a turbulence Reynolds num- 
ber may be entirely adequate for research 
on macroscopic flows, the analysis of 
turbulence substructure requires a third 
Reynolds number, a local turbulence Rey- 
nolds number based not on L and uo but 
on representative eddy size s and eddy 
velocity u': 

u's 
R s -  --. - 

urn 

Note that the molecular kinematic viscos- 
ity urn is retained in this definition. The 
choice of molecular viscosity to charac- 
terize the dissipative mechanisms respon- 
sible for tearing eddies apart is based on 
the ultimate transformation of turbulence 
into heat energy. Molecular processes 
are, in the end, dominant at the small- 
est scales, and Re is a relative measure of 
the loss of kinetic energy from an eddy 
of a given size to heat. For the smallest 
eddies in a flow system, Rs %' 1; that is, 
all the energy of the eddy is dissipated 
into heat. i 
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What then can we deduce from this example about the features necessary for the 
creation of turbulence? 

0 A mean-flow profile richer in kinetic energy than other momentum-conserving 
states to which it can transform (such as the profile in Fig. 6(a) that can transform 
to the one in Fig. 5) .  

0 A viscosity low enough that dissipation to heat cannot absorb all the mean-flow 
energy during the transition to the low-energy profile. 

0 A driving mechanism for enhancement of the inevitable microscopic perturbations 
(such as the Kelvin-Helmholtz instability in Fig. 6). 
However, the energy of turbulence frequently comes from sources (Fig. 7) other 

than a velocity profile rich in mean-flow kinetic energy. For example, turbulence can 
be fed directly from potential energy as when a Rayleigh-Taylor instability develops at 
the interface between, say, water overlying a less dense layer of oil or cold air overlying 
warm air. The latter instance, called buoyancy-driven turbulence, produces the dancing 
air currents that can be seen by looking across the surface of a sunlit roof on a cold day. 
Similarly, turbulence can be fed by accelerative forces as when a Richtmyer-Meshkov 
instability develops at the deformable interface between two materials that are perturbed 
by, say, a passing shock wave or the sudden acceleration of the entire system. 

Droplets, particles, or bubbles projected through a liquid or gaseous fluid with 
some relative velocity likewise can serve as a good source of turbulence energy. The 
momentum-conserving transition induced by drag tends always to bring such entities 
and the fluid to the same velocity. Competition for the center-of-mass kinetic energy 
results in a partition into both heat and turbulence-the winner again depending on the 
level of viscosity. 

Likewise, if a quiescent suspension is subjected to a pressure gradient or shock, 
a differential acceleration occurs that is in proportion to the difference in densities 
between the suspended entities and the surrounding medium. Turbulence often gleans 
a significant share of the resulting interpenetrational energy. 

Turbulence Sinks. So far we have been discussing only sources for turbulence and 
the manner in which the turbulence decays. Here we must return to what constitutes 
turbulence and, in particular, reaffirm that the existence of turbulence depends on the 
observer's point of view. Mean flow is that part of the dynamics whose structure is 
comparable in size to the region being measured; it is capable of being reproducibly 
duplicated or monitored-at least in some statistical sense. Finer dynamical scales of a 
capricious nature arising from random initial, boundary, or bulk perturbations constitute 
the fluid's turbulence. But the mean flow for one observer may simply be the larger 
scales of a turbulence spectrum for an observer whose field of view encompasses a 
somewhat larger domain. Thus, the source of turbulence seen by one observer becomes 
the energy sink for the decay of turbulence at the larger scales of another observer. 

This principle and its generalizations have powerful consequences for our math- 
ematical modeling of turbulence dynamics, leading to the concept of a turbulence 
cascade. In this process turbulence energy is transferred to progressively smaller and 
smaller fluctuational scales with the source of energy for each scale coming from the 
mean-flow velocity contortions of the next larger scale (Fig. 8). At each stage, there 
is competition for the energy, part going into heat and part going into even smaller 
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SOURCES OF TURBULENCE Shear Instability (Scavenging of Mean-Flow Shear Energy) 

Fig. 7. Although we have so far dealt only 
with shear instabilities (Figs. 5 and 6), there 
are many other sources of turbulence, rang- 
ing from the instability of one fluid overlying 
a less dense one, through the interpenetra- 
tion of two distinct phases, to the interaction 
of a shock wave with particles or surfaces. 

Body Force 

Acceleration Instability 

Buoyancy 

(Rayleigh-Taylor) 

Shock Interactions 
with Deformable Surface 

(Richtmyer-Meshkov) 

Energy from Relative Interpenetration (Two-Phase Instability) 

Shock Interaction with a Suspended Particle 

turbulent fluctuations. However, as the scale decreases, the characteristic length of the 
eddies decreases, and the velocity gradients in the eddies become steeper and steeper. 
In other words, dH /dt  eventually wins, and, at the smallest of turbulence scales, energy 
goes directly to heat. 

Thus, cascading of turbulence is consistent with nature's universal law dictating 
that ordered motion must become progressively more disordered until the energy in a 
flow degrades to heat. The direction and magnitude of energy flow within the cascade 
guides us in mathematically describing the decay of turbulence, not only into heat 
from very small-scale eddies but also from large scales to smaller scales. Because the 
transfer of energy through the cascade is, in some sense, equal at all steps, we can 
easily describe the energy decay rate in a manner independent of molecular processes. 
We will describe this approach more extensively when we consider detailed modeling 
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in the next section. 
In an idealized steady-state approximation of turbulence, exactly as much energy 

enters the fluctuational spectrum of motion at the largest scale as leaves it to become 
heat at the smallest scale. More accurately, there is some loss of energy to heat at 
every scale, but the loss at the smallest scale is dominant (Fig. 9). Although these 
ideas have been exploited to derive interesting properties of the small-scale spectrum 
of turbulence energy, our principal concern here is with the largest scales. It is these 
scales that contain most of the energy and thus exert the dominant effects on mean-flow 
dynamics. 

Transport Modeling of Turbulence 

There are numerous theoretical approaches to turbulence: some reach to the 
conceptual heart of the matter, others are directed toward the solution of practical 
problems, and a few attempt to cover the entire range. Despite its present shortcomings, 
turbulence transport theory, which fits into the last category, already shows promise 
of considerable success in both illuminating the fundamental dynamical processes and 
serving as a vehicle for the solution of practical problems. 

TURBULENCECASCADE 

Fig. 8. With each reduction in scale, tur- 

bulent motion of the larger scale becomes 
mean-flow motion of the smaller scale (ar- 

rows). Because each reduction in scale has 

approximately the same change in mean- 

flow velocity occurring over a much smaller 

distance, velocity gradients become steep- 

er, and a larger fraction of the turbulence 

energy goes directly into heat. 
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TURBULENCE ENERGY FLOW Largest Eddy 

Fig. 9. Mean-flow kinetic energy transforms 

into turbulence energy and thence to heat 

energy, but the relative amounts (indicated 

by the sizes of the arrows) transported by 

each mechanism changes as the scale of 
the turbulence changes. For example, in 

the highly turbulent system being illustrated 

here, much of the mean-flow kinetic energy 

feeds into large-scale turbulence, whereas 

thermal energy receives much of its energy 

from small-scale turbulence. 

Smallest Eddy 

Even for a single fluid with constant, uniform density the relevant mathematical 
formulations are lengthy, and there are significant difficulties yet to be resolved. Nev- 
ertheless, we can capture in a relatively simple manner much of the flavor of turbulence 
modeling by starting with the Navier-Stokes fluid-dynamics equations for an incom- 
pressible fluid-that is, a fluid of constant density and viscosity everywhere and for all 
time. One of our fundamental assumptions is that these familiar and deceptively simple 
equations describe everything we need to understand about the turbulence of such a 
fluid, including every "microscopic" detail in every fluctuating part of the turbulent 
flow. 

The Navier-Stokes equations describe the variations of pressure and velocity in 
the fluid. Using Cartesian index notation with the summation convention, we can write 
the first equation, which is an expression of the conservation of mass, as 

au,  
- =o, 
ax,  

and the second, which is an expression of the conservation of momentum, as 

au,  Qu, U] - - 9~ -- ^- u, - + -  + v,,,- 
a t  9x1 ax,  9x2  . 

Rate of Advection Driving Diffusion 
Change Force 
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Viscous Effects 
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'mi. 

Transport In  and Out Sources and Diffusion 

Here vm is the molecular kinematic viscosity coefficient (the ratio of molecular viscosity 
to density pm/p), u, is the ith component of the vector velocity, and p is the ratio 
of pressure to density. Figure 10 illustrates the effects of the various terms in the 
momentum equation. 

So, there it is in a nutshell: the entire, mysterious world of turbulent fluid flow 
described by two short lines of mathematical symbols. Well, not quite the entire real 
world, because many fluids are not the idealized incompressible materials of constant 
viscosity and density considered here, but we shall return to that point below. 

One obvious approach to modeling turbulence is to solve the Navier-Stokes equa- 
tions directly (the left path in Fig. 11). However, certain difficulties limit the success 
of this approach. For example, even when the mean flow is one-dimensional, the equa- 
tions must be solved numerically in three dimensions because turbulence is inherently 
three-dimensional. Only recently have computers had enough computational capability 
to begin meeting the task of solving three-dimensional fluid-flow problems. To describe 
the full spectrum of eddies, the computational mesh would have to be fine enough for 
the smallest eddies, yet cover a domain large enough to include the mean flow and the 
largest eddies. Another complication occurs if the system includes a solid boundary. 
Because the turbulent flow depends on the minute details of the boundary conditions 
(even stochastic quantitites depend on minute perturbations in the initial and boundary 
conditions, such as wall roughness), these details must be specified. Furthermore, be- 
cause a particular set of minute perturbations describe only one possible representation 
of the boundary conditions, repeated calculations must be made with various boundary 
conditions and the results of the calculations averaged to give a complete description 
of the turbulent flow. The memory and speed requirements for the calculations would 

MOMENTUM TRANSPORT 

Fig. 10. The diffusion, driving-force, and'ad- 
vection terms of the Navier-Stokes rnomen- 
turn equation represent the ways in which 
momentum is locally added to or taken away 
from a region in the fluid. 
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APPROACHES TO 

TURBULENCE MODELING 

Fig. 11. Typically, modeling of turbulence 
makes two simplifying assumptions with re- 
spect to the full Navier-Stokes equations: 
an incompressible fluid (V u = 0) and 
the density p constant everywhere. Us- 
ing just the first of these assumptions, one 
could, in  principle, solve the equations di- 
rectly (left pathha difficult task. However, 
if one uses both simplifying assumptions 
together with ensemble averaging, the re- 
sult is two sets of equations: the mean- 
flow equations, which include the Reynolds 
stress tensor flu, and the Reynolds stress 
transport equation. Turbulence transport 
theory (right) uses input from both sets, 
whereas point-functional turbulence models 
(middle) deal only with the mean-flow equa- 
tions (by postulating that R;, is a function 
of mean-flow variables). Later in this ar- 
ticle we describe work on multiphase flow 
in which the assumption of constant den- 
sity has been dropped. Current research is 
just beginning to approach the full Navier- 
Stokes equations for compressible, multi- 
phase flow. 

Compressible 
V.u^O 

Incompressible 
v - u s s o  
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tax even the most powerful of our modem computers. If these calculations could be 
accomplished, however, the advantage of a direct calculation of turbulence would be 
that no approximations or empirical postulates are required. 

Ensemble Averages. Largely for the reasons given above, almost all theoretical ap- 
proaches to turbulence modeling use some type of averaging~either temporal, spatial, 
or ensemble. With the proper statistical treatment, the solution of turbulent flow prob- 
lems need not resolve the full spectrum of eddies, initial and boundary conditions need 
not be specified in minute detail, and a flow whose mean velocity is one-dimensional 
can be numerically calculated in one dimension even though the resolved turbulence is 
three-dimensional. However, with these advantages for turbulence transport modeling 
come the disadvantages of assumptions and approximations needed to obtain a set of 
solvable equations. 

What is meant by the average of any flow variable in a turbulent flow? Time 
averages are easy to understand. We say that fluid flow is statistically steady if the time 
average of many fluctuations at some point in space is independent of the averaging 
period chosen. Spatial averages, likewise, are easy to visualize but are relevant only 
when the structural scale of the turbulence is very small compared with that of the 
mean-flow fluctuations-a relatively rare condition. Here we will focus on ensemble 
averaging, which is the most general type of averaging with the fewest restrictions. 

We can intuitively sense what an ensemble average is if we imagine a very large 
number of experiments, all with the same macroscopic initial and boundary conditions, 
but each with its own particular realization of the turbulent part of the flow (Fig 12). 
The ensemble average of some flow parameter at any given point and time is then the 

Fig. 12. Consider a series of experiments, 
each conducted with the same initial and 

boundary conditions. For each, we deter- 
mine the pressure p at a particular point in 

space as a function of time. An average 
of all these experiments would represent an 
ensemble average. 
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average of that parameter over all the experiments. For the condition of steady flow, 
time and ensemble averages are the same. 

The ensemble average is most conveniently formulated in terms of moments of 
an appropriate distribution function. (Here, rather than integral nomenclature, we will 
simply use an overline to designate an ensemble average.) Thus p is the moment, or 
ensemble average, of the pressure (per unit density), and pu, is the ensemble average 
of the product of pressure and the i th component of fluid velocity. (Note that pu, does 
not necessarily equal p K . )  

For each experiment in a series, detailed measurements give p and ui, both of 
which fluctuate strongly as a function of position and time. Likewise, p and vary 
with position and time but in a much calmer fashion. The difference between the 
individual experimental value and the ensemble average is the 'fluctuating part of the 
variable, denoted by a prime: p' = p - p; u, = u; - K. The ensemble average of this 
fluctuating part must be zero for each variable (that is, p' = 0  and = O), but it does not 
follow that the moment, or ensemble average, of a product of fluctuational variables 
(such as f l  or u'u') 1 I vanishes. Indeed, the essence of our turbulence modeling is 
contained in the behavior of such ensemble averages of fluctuational products. 

Reynolds-Stress Transport Equation. One of these fluctuational products, the 
Reynolds stress tensor, is especially important; it is defined by 

Notice that the contraction of the Reynolds stress tensor (that is, when i = j )  is exactly 
twice the turbulence kinetic energy per unit mass of fluid (Rii = = 2K). 

The importance of Rij in turbulence modeling can be demonstrated quite handily. 
First we rewrite the Navier-Stokes equations, expressing each of the variables as the 
sum of its mean and fluctuating parts: 

and 

a a ( ~ + ~ ' )  a2 (u ,+u; )  a(%+u;)  + _  ,(u,+^ ( F + ~ ; ) ]  = - 
at ax, ax, ax; + urn . (12) 

Then we take the ensemble average of these equations (commuting averages and 
derivatives where necessary and remembering that the average of a single fluctuating 
variable is zero) and obtain the mean-flow equations: 

au, = o  
9xi 

and 
a m  __ 9p a ~ ; ,  a2u, 
- + - (u .  u . )  = -- - - + urn- 
at ax, ' ' a x d x ,  9x2. 
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A single term involving the Reynolds stress has emerged, and we see that the only effect 
of turbulence on the mean flow is through the addition of that term to the equations. 
We note in passing that Eqs. 13 form the basis of point-functional turbulence models 
(the middle branch in Fig. 11) and will return to this point shortly. 

The mean-flow equations (Eqs. 13) can be subtracted from the full equations 
(Eqs. 12) to show that the fluctuating parts of the variables obey the equations 

and 

We need Eqs. 14 to derive the Reynolds-stress transport equation, that is, a description 
of the behavior of the Reynolds stress itself (the right branch of Fig. 11). This derivation 
is straightforward but tedious. We merely note that the following steps are involved: 

1. multiply Eq. 14b by ui to obtain Eq. 14c, 
2. interchange i and j in Eq. 14c to obtain Eq. 14d, 
3. add Eqs. 14c and 14d, and 
4. take the ensemble average. 

With some rearrangement of terms and the identification of Rii in several places, the 
result is 

Rate of 
Change 

in which 

Advection Mean-Flow Source Triple 
and Rotation Correlation 

Driving Force Diffusion Decay 

We now can distinguish the turbulence-transport theories and their predecessors, 
the point-functional turbulence theories. As we remarked earlier, point-functional 
turbulence theories use Eqs. 13 by postulating a form for the Reynolds stress Rij that is 
a function of the mean-flow variables themselves. As a result, such theories are called 
"point-functional" because the description of the turbulence at some point in the flow 
depends only on the current value of the mean-flow variables. Point-functional theories 
have the advantage of being as easy to solve as the original Navier-Stokes equations but 
have the shortcoming that the theories are largely empirical and have limited regions 
of applicability. 

Lo.? Alamos Science Special Issue 1987 



Turbulence 

TURBULENCE TRANSPORT 

Fig. 13. Just as Fig. 10 illustrates the vari- 

ous terms of the Navier-Stokes momentum 

equation, this figure illustrates the various 
terms of the Reynolds-stress transport e- 

quation. The driving force and the diffusion 

terms appear twice because each can be de- 

composed into a contribution to the trans- 
port of turbulence and a contribution to the 

generation or diffusion of turbulence. 

In contrast to point-functional theories are the history-dependent, or turbulence- 
transport, theories. These theories, the focus of our interest here, include a set of one 
or more auxiliary equations that describe the history, or transport, of the variables 
associated with turbulence and that are solved in conjunction with the mean-flow 
equations (Eqs. 13). The auxiliary equations can range from empirical postulations 
to some form of the Reynolds transport equation (Eq. 15). 

Because our starting point was the Navier-Stokes equations, turbulence-transport 
theory based on Eqs. 13 and 15 should, in principle, contain all the necessary infor- 
mation to describe the mean properties of turbulent flow. However, in practice it is 
necessary to introduce additional constraints or empirical information to yield a solvable 
set of equations. This procedure of "closing" the set of governing equations is called 
closure modeling and plays a central role in turbulence-transport theory. 

The development of a solvable set of equations is beyond the scope of this article 
(although, in the following section we do so for a simple treatment of turbulence). 
We can nevertheless capture much of the flavor of the necessary developments by 
considering the significance of the terms in the Reynolds transport equation (Fig. 13 
graphically illustrates the nature of each) and by considering the difficulties of describing 
their properties in terms of the macroscopically accessible mean-field quantities. 

Advection, Mean-Flow Source, and Rotation. The advection and the mean-flow 
source and rotation terms of Eq. 15 contain only the unknown tensor R;, and the mean- 
flow velocities; no reference to the detailed turbulence structure occurs. These terms 
constitute a bulwark of settled mathematical structure for which there are essentially no 
uncertainties or controversies about the physics. In essence they describe the manner 
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in which the mean flow moves turbulence from one place to another by translation, 
rotation, and stretching or contraction of the fluid. 

Triple Correlation. The triple-correlation tensor u;u;uL that appears in the next term 
in Eq. 15 is usually interpreted as a diffusive flux of the Reynolds stress generated by 
the action of the stress itself. Thus, this term can be called the turbulence self-diffusion 
term because it describes the turbulent diffusion of turbulence. 

We can show in more detail how this identification is made and, at the same time, 
illustrate what is meant by closure modeling. If Q represents some quantity (such as 
the concentration of a dissolved, neutrally-buoyant substance) that is purely advected 
by the incompressible fluid, its transport equation is simply 

Decomposing the variables into mean and fluctuating parts and taking the ensemble 
average (as we did before with Eqs. 12 and 13), we find that 

Since the right side describes the diffusion of Q due to the effects of turbulence, we - 
directly identify Q'u' as a diffusive flux. Just as the flux of a chemical species is 
proportional to its concentration gradient (Pick's law), the diffusive flux is proportional 
to the gradient of Q itself: 

- QQ Q'u' oc -. 
ax, 

The proportionality constant is a function of the turbulence intensity; indeed, more 
detailed considerations indicate that 

in which s is the length scale of the turbulence. It follows that 

In this manner, we see what is meant by closure modeling, that is, the elimination 
of any residual reference to details of the turbulence. For our purposes we need not 
delve any deeper into this aspect of turbulence modeling; the example is sufficient to 
indicate some of the heuristic and empirical procedures we inevitably have been forced 
to employ. 

Driving Force. The pressure-velocity correlation terms (the first two terms on the right 
side of Eq. 15) are especially important to the transport modeling of turbulence. They 
describe one of the principal driving forces by which mean-flow energy finds its way 
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into fluctuations. Moreover, they contribute significantly to the isotropic rearrangement 
of anisotropic turbulence. 

The unstable slip plane of Fig. 6a is excellent for visualizing the effects of these 
terms. Previously, we observed that on either side of the slip plane a slight increase in 
velocity over the mean for that side is accompanied by a slight decrease in the pressure, 
whereas exactly the opposite occurs in the other half of the fluid. Thus, fluctuations 
in pressure and velocity are strongly correlated. Because u i  and Qp'/Oy have opposite 

signs (for example, an increase in u i  in the lower half results in a downward or negative 
pressure gradient), the ensemble average of the product of these variables is always - 
negative. But the two u,'g terms in Eq. 15 are negative, so these terms are a positive 
source to Rxy (that is, to the anisotropic, or off- diagonal, components of the Reynolds 
stress tensor). 

Once Rq is created, it ultimately contributes to the turbulence kinetic energy K ,  
which, as we noted earlier, is proportional to Rii (that is, to the sum of diagonal 
components of the stress tensor). That Rxy contributes to K is easily illustrated by 
examining the contracted form of the Reynolds stress transport equation for, say, the 
type of flow illustrated in Fig. 5. In this case, the mean-flow source terms contribute 
to the rate of change only as follows: 

Hence, the anisotropic, or off-diagonal, components of Rij ,  once created by the mean 
flow from the driving-force terms, eventually contribute to the turbulence kinetic energy 
through the mean-flow source terms. 

Diffusion and Decay. Of the last two terms in Eq. 15, the first is usually negligible 
and represents diffusion of turbulence by molecular viscosity, which requires no further 
modeling. The second involves the tensor Di j ,  for which the usual procedure has 
been to derive a horrendously complicated transport equation and attempt to solve this 
simultaneously with the Reynolds transport equation. Such a procedure introduces a 
host of additional correlation terms to be modeled, and much appeal to "intuition" is 
invoked in the process. 

Bypassing the fascinating but tedious discussion of these derivations, we can 
nevertheless describe several interesting properties of this second term. First, it? 
contraction 

is positive definite so that the -4vmDi, term in Eq. 16 always describes a decay of the 
turbulence energy. 

The second interesting property, deduced by extensive manipulations of the Dij 
transport equation, is that Dij should vary inversely as the molecular viscosity under 
almost all circumstances. Therefore vmDij is essentially independent of viscosity, which 
seems paradoxical. Resolution of this paradox hinges on an important property of 
turbulence: most of the turbulence effects and energy are associated with the largest of 
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the eddies, which decay first by cascading to smaller eddies before converting to thermal 
energy (Fig. 9). Thus, an alternative to the usual modeling of the behavior of DQ has 
recently emerged. We can get the same results by treating the decay of the large-scale 
eddies as the energy source of the small-scale eddies. For this purpose the large- 
scale eddies are momentarily thought of as being "mean flow." In some complicating 
circumstances, such as interpenetration of particles, this alternative modeling technique 
has proven so far to be the only tractable approach. 

Simpler Transport Models and Examples of Their Application 

Some problems do not warrant the degree of complexity and closure approximation 
required to numerically solve the full Reynolds-stress transport equation. A more con- 
ventional and practical approach uses the following approximation (called Boussinesq's 
approximation) for turbulence stresses in an incompressible fluid: 

in which ut, the turbulence viscosity, is a measure of the increase in viscosity due 
to turbulence (see "Reynolds Number" and "Reynolds Number Revisited), and 6,j 
is the Kronecker delta function (6,, = 0 if i # j ,  6,, = 1 if i = j, and S,, = 3). 
This approximation is consistent with the definition of turbulence kinetic energy in 
terms of the Reynolds stress: Ra = 2K.  Furthermore, the approximation bears a 
strong resemblance to the Stokes formulation for laminar-flow stresses p Ã £  in which 
the stresses are related to molecular viscosity and fluid pressure (rather than turbulence 
viscosity and kinetic energy): 

The chief advantage of using Boussinesq's approximation is that transport relationships 
for all individual components of RÃ are replaced by a single expression involving an 
effective turbulence, or eddy, viscosity. 

How does one describe ut? The simplest imaginable description of the turbulence 
viscosity is that it is a constant that depends on some average mean-flow parameters. 
Somewhat better is a formulation that relies on a mixing length 1 ,  which is usually 
an algebraic estimate of the size of the main energy-containing eddies as a function 
of flow geometry. For example, one approach that has proven quite successful for 
boundary-layer flow and some other well-defined jet flows is to define uL by modifying 
Prandtl's mixing-length theory so that 

In this equation, n is the local distance to a rigid object or axis of symmetry and u is a 
representative free-stream velocity. Note that Eq. 26 makes vt a function of mean-flow 
parameters only and is thus an example of point-functional modeling. 
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Reynolds Number 
Revisited 

s discussed in the earlier sidebar, A the Reynolds number is a conve- 
nient and physically sound 

for comparing similar flows under d 
ent circumstances. For instance, as flow 
speed through a pipe increases, the drag 
on the fluid increases and, 
so also does the required 
sure; these increases are reflected in a 
corresponding increase in Reynolds n m -  
ber. Total friction experienced by the 
fluid undergoing laminar flow is usually 
expressed in terms of the Reynolds num- 
ber R ,  allowing easy comparison between 
widely varying tests. 

Once the Reynolds number reaches a 
critical value, however, laminar flow in 
the pipe becomes turbulent, and further 
increases in Reynolds number no longer 
reflect significant changes in measured 
drag. At this point, the effective turbu- 
lence Reynolds number Reff becomes a 
more appropriate gauge, reflecting the ra- 
tio of inertial to turbulence momentum- 
dissipation effects (rather than inertial to 
viscous-dissipation effects). 

Although the Reynolds number can, in 
theory, be increased without bound, the 
turbulence Reynolds number cannot. The 
value of Refi is not directly and uniquely 
set by readily measured properties and 
flow geometry but rather depends on eddy 
generation and the resulting eddy sizes 
within the flow field. A limiting value 
of Res is observed in turbulent-flow ex- 
periments. 

To demonstrate this behavior quantita- 

tively, it is convenient to make some sim- 
plifying assumptions. Typically, the tur- 

e viscosity ui, which is much larger 
than the molecular viscosity uo,, is taken 
to be equal to the product of eddy size 
8 (the turbulence length scale), an appro- 
p a t e  turbulence velocity (here taken as 
K1^2, where K is the specific turbulence 
kinetic energy), and a universal constant 
l/Cy. Thus 

where L is a characteristic length for the 
mean flow. 

If, as is usually the case, the turbulence 
kinetic energy is some fraction of the 
mean-flow kinetic energy (K $ f K u i ) ,  
then 

that is, Reff is proportional to the ratio of 
the length scales. As turbulence gains in 
intensity, its average length scale usually 
decreases slightly, but not without limit. 
In fact, the largest eddies, those that con- 
tain the major fraction of the turbulence 
kinetic energy, will be some portion of 
the mean-flow length scale (such as pipe 
diameter). Therefore, since Cu is usually 
about 10 and an upper bound on L / s  is 
typically 20, Reff will seldom exceed sev- 
eral hundred, even in the most intensely 
turbulent flows. On the other hand. R can 
be several million or more. 
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For more complex flows the simplifications introduced through Eq. 26 are not 
justified, and a transport model that details evolution of ui, or quantities related to it, is 
needed. Although this approach is viable only at the expense of much added complexity, 
it has recently been favored by investigators working with the complicated flow patterns 
of high-speed jets, shock-boundary-layer interactions, and two-phase flows. 

To produce a simplified transport description of turbulence, we rely on flow 
properties already introduced to develop a dimensionally correct form of ut. For 
example, 

where Cv is a model constant, hopefully universal in its applicability, and e = 2umDii. 
The last parameter, e, is related to the mean rate of dissipation of turbulence kinetic 
energy and, as discussed in the earlier section entitled "Diffusion and Decay," is 
independent of molecular viscosity. 

From this definition of turbulence viscosity, we can generate transport equations 
for 6 and K .  For instance, after performing the tensor contraction of the Reynolds 
transport equation (Eq. 15) and introducing appropriate closure expressions, we obtain 
the following simplified transport equation for K :  

Here (JK is a model constant of order one, and, because of Eq. 27, ut is itself a function 
of K and e. 

Next, a treatment similar to that used earlier to split the flow variables into mean 
and fluctuating parts is applied to the Navier-Stokes momentum equation to create a 
transport equation for Dij.  Again, after contraction and closure modeling, we get the 
following transport equation for e: 

where Cl ,  C2, and fi are model constants, all of order one. 
To show how we apply this model, we return to the problem of turbulence in a 

slip plane (Fig. 6). Our goal is to demonstrate numerically that turbulence is indeed 
generated by such a configuration and that we can follow its development throughout 
a two-dimensional flow field as a function of time and position. We use three different 
methods of accounting for the turbulence and discuss the pros and cons of each. 

The first method involves direct solution of the Navier-Stokes equations by a finite- 
difference method as an approximation to the left path in Fig. 11. Our calculations use 
a two-dimensional velocity field, and turbulence below the scale of the computational 
grid is thus ignored. We assume that a slight, sinusoidal vertical velocity is imparted 
to the interface separating the oppositely flowing fluids. The maximum speed of this 
perturbation is only 1 per cent of the mean translational speed (and thus the kinetic 
energy associated with the perturbation is, at most, l o 4  times the mean-flow kinetic 
energy). 
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THREE SIMPLIFIED 

TURBULENCE CALCULATIONS 

Fig. 14. The evolution in  time (from top to 

bottom) of the turbulence in the slip-plane 

problem of Fig. 6, as determined by three 

different types of simplified calculations. In 

(a), a large-scale sinusoidal perturbation in 

the vertical direction is calculated with full 

equations without modeling the unresolved 

turbulence. The marker-particle plot (cor- 

responding to mean-flow streaklines) in the 

third panel shows that a slip-plane instabil- 

ity is a strong source of perturbation in the 

velocity field. In (b), the perturbational en- 

ergy of (a) has been increased 10 per cent 

with the addition of small-scale fluctuations. 

These fluctuations are accounted for with a 

turbulence kinetic energy K and its trans- 

port equation, and the panels show contour 
plots of K .  This more realistic approach 

reveals a faster growth in the turbulence. 

Finally, in (c), all the perturbational energy 

(both small- and large-scale motion in the 

vertical direction) is accounted for as turbu- 

lence kinetic energy. From this perspective, 

mean flow can only be horizontal and thus 
varies in only one (vertical) direction. The 

contour plots of turbulence kinetic energy 

show the same growth rate as in (b) for rnix- 

ing between the layers of undisturbed flow. 

The results of our calculations are shown in the left column of Fig. 14 as marker- 
particle plots in which the lines correspond to mean-flow streaklines (representing what 
you would see if you had introduced a stream of smoke). As time progresses (from 
top to bottom in the figure), we see that the width of the mixing layer spreads and 
displays wave-like structures characteristic of the Kelvin-Helmholtz instability. Thus, 
our calculations show that a slip-layer instability is indeed a strong source of turbulent 
mixing. 

A more interesting and realistic approach incorporates simplified transport of 
turbulence in the calculations. Consider the same flow, only with additional small- 
scale sinusoidal perturbations superimposed on the initial large-scale perturbation. If 
we were to use the first method and treat these minute fluctuations as part of the 
resolved flow, we would need a much finer computational grid to resolve the details 
of the velocity field. Rather than do this, we account for the microscopic perturbations 
through a turbulence kinetic energy K and its corresponding transport equation, then 
plot the results of our calculations as contour plots of K .  This model is more realistic 
because the kinetic-energy variable incorporates all length scales of turbulence, as well 
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as the three-dimensionality. 
For our simplified transport calculation, we assume the same large-scale perturba- 

tion (with an energy l o 4  times the mean-flow kinetic energy) and then add a further 10 
per cent (or l o 5  times the mean-flow energy) in small-scale energy. Our results (the 
second column of Fig. 14) show that accounting for small-scale perturbational energy 
causes the growth rate of the turbulence to be much larger than in the first method. 

We should also note that even though turbulence is inherently three-dimensional, 
both the first and second methods deal with mean flow in two dimensions. In the second 
case, however, we are able to account for the third dimension in an average sense via 
turbulence kinetic energy and its transport. 

A third approach is to treat all length scales as turbulence~even the large-scale 
perturbation, which, so far, has been treated as part of the mean flow. We can do 
this because the exact definition of turbulence is a relative one that depends on the 
observer's point of view. If we adopt this scheme, the flow becomes one-dimensional, 
that is, only vertical changes occur in ii, K ,  and e. 

In our calculations with this method, we assume the same total initial perturbational 
energy as in the second example, but with the large- and small-scale energies lumped 
together. Once again, all length scales of turbulence are incorporated, and our results 
(the third column of Fig. 14) show that the growth rate of the layer matches that in the 
second example very closely. On the other hand, turbulence on the largest length scale, 
which corresponds to mean flow in the earlier examples, is not resolved in detail. 

Thus, to effectively use turbulence modeling, one must decide which length scales 
will be considered mean flow and which will be considered turbulence. Once this has 
been decided, the power of the method allows us to describe the flow accurately without 
having to dedicate excessive computer resources to resolving minute flow structures in 
detail. 

Current Research 

So far we have concentrated on turbulence in a single incompressible fluid with 
density perfectly constant in position and time (the downward branches of Fig. 11). 
Recently, our research has included additional features that are of interest to many of 
the new scientific and engineering directions at Los Alamos and other laboratories. 
These features are 

Two-phase flow interactions: the sources, sinks, and effects of turbulence in a fluid 
containing particles, droplets, or bubbles of another material. 

0 Density gradients: turbulence in an incompressible fluid for which variations of 
temperature or the presence of some dissolved substance cause large variations in 
density. 
Supersonic turbulence: the effects of high-speed processes on turbulence. 

In all cases, we continue to use the basic philosophy of transport modeling, which, 
despite some obvious difficulties, seems at present to be by far the most promising 
approach for the solution of practical problems. 

Two-Phase Flow. Particles, drops, or bubbles suspended in a fluid-whether that fluid 
is a liquid or a gasÃ‘ca significantly alter the turbulence and its effects. Intuitively, 
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TWO-PHASE INTERPENETRATION 

Fig. 15. Our transport modeling techniques 

are able to handle both ordered interpene- 

tration of two phases, such as occurs in the 

laminar-flow transport of blood cells, and 
disordered interpenetration, such as occurs 

in a rapidly moving gas that contains sus- 

pended particles. 

Ordered 

\t ^ 
Disordered 

we expect that when distinct entities interpenetrate a surrounding fluid the creation of 
turbulence is enhanced; on the other hand, we also expect the inertial properties of 
heavy entities to dampen turbulent fluctuations. How can we describe these effects 
quantitatively? 

From considerations similar to those for incompressible flow of a single fluid, we 
know that extra turbulence is generated by pressure gradients producing differences in 
the accelerations of the particles and of the surrounding fluid. Such differential acceler- 
ation induces distortions of the fluid around the particles, thereby creating disturbances 
in the velocity field that would be absent if there were no particles. 

For example, consider the flow field of a shock wave moving horizontally and 
passing a rigid particle suspended in the fluid. If no particle was present, the flow 
would remain completely horizontal. However, as the shock wave passes the particle, 
local velocity fluctuations appear, including changes in the horizontal velocity and 
the generation of vertical velocity. As soon as there is a velocity difference between 
the velocity fields of the particle and the fluid, viscous drag forces, competing with 
differential acceleration, begin to diminish any velocity perturbations. 

In a manner analogous to that for single-phase flow, the relative contributions oi 
acceleration and viscous drag can be compared through a particle Reynolds number 

where Dp is the particle diameter, up and uf  are the local velocities of the particle and 
fluid, respectively, and urn is the molecular kinematic viscosity of the fluid. 

Consider a shock moving with a high velocity through a collection of particles that 
are initially at rest, such that Rn >> 1. At first, the effects of differential acceleration 
dominate and turbulence kinetic energy is created. Then, as viscous drag causes the 
particles to be swept along with the fluid, the velocity difference and the particle 
Reynolds number decrease, corresponding to a dampening of turbulent fluctuations. 
Since the amount of drag depends on the volume fraction of the particles, the turbulence 
level that is induced will also depend on this parameter. 

These effects, however, address only a small fraction of the rich spectrum of 
dynamic processes that can occur in multifield turbulent flows. In our approach 
we discard the more conventional procedure of decomposing velocities and volume 
fractions and, instead, consider momentum and volume fractions as the primary variables 
to be conserved, decomposing these into their mean and fluctuating components. Such 
an approach allows us to derive two limiting fluid behaviors: diffusion (in the limit 
of strong momentum coupling between the particle and fluid fields), and wave-like 
interpenetration (in the weak-coupling limit). Our model is thus strongly analogous 
to the interpenetration of two different molecular species: diffusive when the mean 
free path is short, and wave-like when little or no coupling is present and the species 
transport as if each were expanding into a vacuum. 

In addition, our model handles both ordered and disordered interpenetration of two 
phases as illustrated in Fig. 15. Other technical accomplishments include the resolution 
of mathematical ill-posedness of the multiphase flow equations, the emergence of a new 
closure principle (based on the constraint, with generalized Reynolds-stress expressions, 

Los Alamos Science Special Issue 1987 



Turbulence 

of exactly neutral stability for the mean-flow equations), and the development of 
practical modeling equations. 

The modeling of turbulent flow with dispersed particles, droplets, or bubbles is 
of interest to a wide variety of scientific projects at the Laboratory. For example, to 
model the transport of dust and debris by volcanic eruptions, one must concentrate 
on the interactions between particulate and hot-gas flows. To improve the design of 
internal combustion engines, one needs an accurate prediction of both the combustion 
efficiency and the spatial distribution of heat generation, which, in turn, requires 
knowing the details of the mixing of fuel droplets and air. Although flow within 
the body's circulatory system is normally not turbulent, the transport of blood cells 
can be analyzed by using the equations for ordered two-field interpenetration. Other 
applications include modeling of the flow within nuclear reactors and the analysis of 
shock-wave motion in a gas that contains suspended particles. 

Density Gradients. The second area we are currently striving to understand with 
transport modeling is turbulent mixing generated by strong density gradients that are 
sustained by large variations in thermal or material composition. Coupled with pressure 
gradients, such density gradients can lead to strongly contorted flow with intense 
vorticity near the steepest density variations. Again, the proper basis for deriving a 
generalized Reynolds stress lies in decomposing the momentum rather than the velocity. 

Among the most important configurations to be studied are those for which adjacent 
materials-initially quiescent and of very different densities-are rapidly accelerated 
by a strong pressure gradient or heated by a sudden influx of radiation. The ensuing 
fluid instability (Richtmyer-Meshkov if the shock is going from heavy to light material, 
Rayleigh-Taylor for the opposite case (Fig. 7)) can act as a strong source for the 
turbulent mixing of the two materials. 

For example, consider an experiment in which a plane shock wave progresses 
down a closed cylindrical tube divided into two sections by a permeable membrane 
with air in the first section and helium in the second. As the shock passes from the 
dense to the less-dense gas, the air-helium interface is accelerated. Later, the interface 
is repeatedly decelerated by reflections from the rigid wall at the end of the tube. 
Interface instabilities lead to turbulent mixing of the two gases, and the initially sharp 
plane separating the gases becomes smeared and indistinct. Our work allows prediction 
of the average concentration across any strip of fluid taken normal to the nominal 
streaming direction and calculation of velocity and density profiles within the turbulent 
mixing zone. 

Instabilities driven by density gradients are important to the study of the implosion 
dynamics of pellets used in inertial confinement fusion (Fig. 16). Radiation from a high- 
power laser initiates the implosion of an outer spherical capsule, creating a strong shock 
wave. This shock passes over the interface between the inner surface of the capsule 
and the enclosed gas, is reflected from the core, and returns to the interface where it 
induces Rayleigh-Taylor instability. The resultant mixing of gas and capsule in the 
central region of the pellet can, in many cases, reduce neutron yield. 

Another area of interest is the dynamics of fire plumes in the postulated circum- 
stances of "nuclear winter." Extreme heating of the ambient atmosphere produces up 
to four-fold expansions, resulting in a powerful updraft with intense turbulence. 

CURRENT APPLICATIONS 

Fig. 16. We are currently incorporating addi- 
tional features in transport modeling so that 
more complex phenomena can be described 
adequately. An example is implosion of an 
inertial-confinement fusion capsule, during 
which two-phase turbulent interactions be- 
tween the capsule and the hot fuel gases 
decrease the efficiency of the implosion. We 
also are investigating the density-driven tur- 
bulence that enhances mixing in fire plumes. 

ICF Capsule Implosions 

Nuclear Winter Fire Plumes 
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Supersonic Turbulence. Mach-number effects often can be ignored, but, in some 
cases (such as the high-Mach-number mitigation of a Kelvin-Helmholtz instability), 
such effects are significant. Thus, a third feature of our recent work has been to in- 
clude the principal phenomena resulting from supersonic flow speeds. These effects 
arise across shock waves, in the shear layers behind Mach-reflection triple-shock inter- 
sections, and in the shear layers behind shock waves normal to a deformable wall. 

An unexpected result of our work is the discovery that laminar instability theory 
(as sketched out in the section entitled "Turbulence Energy: Sources and Sinks") is 
applicable to the study of supersonic turbulence. Despite the seeming inconsistency, 
this theory is providing highly relevant guidance to our early modeling efforts. 

Concluding Remarks 

A pertinent question is: What good is all this? Not only has our discussion 
illustrated several ways in which turbulence transport theory is heuristic or empirical, 
but the current large inventory of undetermined "universal" dimensionless parameters 
in its formulation is disturbing. Moreover, full expression of the theory is long and 
complicated, involving numerous coupled nonlinear partial differential equations. As a 
result, a transport calculation requires either costly numerical solutions or questionable 
approximations, or both. 

What are the alternatives? There is no way to resolve turbulence in sufficient 
detail for numerical calculations based on turbulence transport theory to represent 
the effects of any but the simplest circumstances. Mixing-length theories and other 
point-functional approaches are hopelessly limited in their applicability. Fundamental 
approaches purporting to describe turbulence without empiricism are, in general, also 
restricted to highly idealized circumstances. Yet we are faced with the task of solving 
an endless variety of fluid-flow problems, a large fraction of which include significant 
turbulence effects. We need to supply answers to old questions and guidance for new 
developments in a meaningful way. At present, there seems to be no better approach 
to these challenging analytical tasks than that provided by turbulence transport theory. 

Despite the shadows cast by these comments, the situation is actually far from 
gloomy. Turbulence transport theory seems to be functioning far better than we have 
any right to expect. There are at least four reasons for this good performance. 

First, complex processes of nature often display a near universality in the collective 
effects that are of most interest. Just as gas molecules almost always have a nearly 
Maxwell-Boltzmann velocity distribution, it appears that turbulence tends toward a 
similar universality in its stochastic structure. The success of the few-variable (or 
collective, or moment) approach to turbulence modeling relies strongly on the validity 
of this contention. Although the extent to which universal behavior underlies most of the 
random processes of nature is currently a matter of intense scientific and philosophical 
discussion, much evidence supports the ubiquitous nature of this property. Perhaps, 
eventually, such universalities will help to successfully model such diverse instances 
as thoughts in a brain, activities of groups of organisms (such as mobs of people), and 
the dynamics of galaxies. 

Next, turbulence transport modeling pays close attention to the binding constraints 
of real physics: conservation of mass, momentum, and energy, as well as rotational and 
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translational invariance. Such modeling also accounts for history-dependent variations 
lacking in many other turbulence theories. 

We have also paid great care to physically meaningful closure modeling. Auxiliary 
derivations (like those of laminar instability analysis) combine with new formulations 
of mathematical restrictions (like that of precisely neutral mean-flow stability in the 
presence of generalized Reynolds-stress terms) to constrain our modeling procedures 
in the most physically meaningful manner possible at each stage of the development. 

Finally, investigators throughout the world have made numerous comparisons 
with experiments, leading to corrections, improvements, and ultimately to considerable 
confidence in the broad applicability of the results. 

Future research will concentrate on several significant aspects of the theory. Clo- 
sure modeling, of course, continually needs strengthening, especially by first-principle 
techniques that decrease our reliance on empiricism. The numerical techniques need 
greater stability, accuracy, and efficiency for a host of larger and more complicated 
problems. 

But the most intriguing challenge is how to incorporate new and different physical 
processes into our theories. For example, with dispersed-entity flow, we have scarcely 
begun to understand the effects of a spectrum of entity sizes or the deformation of 
individual entities (including their fragmentation and coalescence) or the modifications 
that arise when the entities become close-packed (as they do, for example, during 
deposition and scouring of river-bed sand). The dispersal of turbulence energy through 
acoustic or electromagnetic radiation is another interesting topic that needs considerable 
development. Deriving, testing, and applying the appropriate models will keep many 
investigators busy for a long time. rn 
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T 
he invention of a totally dis- 
crete model for natural phenom- 
ena was made by Ulam and von 
Neumann in the early fifties and 

was developed to the extent possible at 
the time. A few years earlier von Neu- 
mann had designed the architecture for 
the first serial digital computers contain- 
ing stored programs and capable of mak- 
ing internal decisions. These machines 
are built of electronic logic devices that 
understand only packets of binary bits. 
Hierarchies of stored translators arrange 
them into virtual devices that can do or- 
dinary or radix arithmetic at high speed. 
By transcribing continuum equations into 
discrete form, using finite difference tech- 
niques and their variants, serial digital 
computers can solve complex mathemat- 
ical systems such as partial differential 
equations. Since most physical systems 

PART I 
BACKGROUND FOR 

LATTICE GAS AUTOMATA 
The lattice ,qas automaton is an approach 
to computing fluid dynamics that is still 
in its infancy. In this three-part article 
one of the inventors of the mode! presents 
its theoretical foundations and its promise 
as a general approach to solving partial 
differential equations and to parallel com- 
puting. Readers less theoretically inclined 
might begin by reading "Calculations Us- 
ing Lattice Gas Techniques" at the end 
of Part 11. This sidebar offers a summary 
of the model's advantages and limitations 
and a ,qraphic display of two- and three- 
dimensional lattice gas simulations. 

with large numbers of degrees of freedom 

can be described by such equations, se- 
rial digital machines equipped with large 

memories have become the standard way 
to simulate such phenomena. 

As the architecture of serial machines 
developed, it became clear to both Ulam 
and von Neumann that such machines 
were not the most natural or powerful 
way to solve many problems. They were 
especially influenced by biological exam- 
ples. Biological systems appear to per- 
form computational tasks using methods 
that avoid both arithmetical operations 
and discrete approximations to continu- 
ous systems. 

Though motivated by the complex in- 
formation processing of biological sys- 
tems. Ulam and von Neumann did not 
study how such systems actually solve 
tasks. Biological processes have been 
operating in hostile environments for a 
long time, finding the most efficient and 
often devious way to do something, a 
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way that is also resistant to disturbance 
by noise. The crucial principles of their 
operation are hidden by the evolutionary 
process. Instead, von Neumann chose 
the task of simulating on a computer the 
least complex discrete system capable of 
self-reproduction. It was Ulam who sug- 
gested an abstract setting for this problem 
and many other totally discrete models, 
namely, the idea of cellular spaces. The 
reasoning went roughly like this. 

The question is simple: Find a mini- 
mal logic structure and devise a dynam- 
ics for it that is powerful enough to simu- 
late complex systems. Break this up into 
a series of sharper and more elementary 
pictures. We begin by setting up a collec- 
tion of very simple finite-state machines 
with, for simplicity, binary values. Con- 
nect them so that given a state for each 
of them, the next state of each machine 
depends only on its immediate environ- 
ment. In other words, the state of any 
machine will depend only on the states 
of machines in some small neighborhood 
around it. This builds in the constraint 
that we only want to consider local dy- 
namics. 

We will need rules to define how states 
combine in a neighborhood to uniquely 
fix the state of every machine, but these 
can be quite simple. The natural space 
on which to put all this is a lattice, with 
elementary, few-bit, finite-state machines 
placed at the vertices. The rules for up- 
dating this array of small machines can 
be done concurrently in one clock step, 
that is, in parallel. 

One can imagine such an abstract ma- 
chine in operation by thinking of a fishnet 
made of wires. The fishnet has some reg- 
ular connection geometry, and there are 
lights at the nodes of the net. Each light 
can be on or off. Draw a disk around 
each node of the fishnet, and let it have a 
1-node radius. On a square net there are 
four lights on the edge of each disk, on 
a triangular net six lights (Fig. 1). The 
next state of the light at the center of the 
disk depends on the state of the lights on 

CELLULAR SPACES 

Fig. 1. Two examples of fishnets made of wires 

with lights at the nodes. The lights are either 

on or off. In each example a disk with a radius 

of 1 node is drawn around one of the lights. 

The next state of the light at the center de- 

pends on the states of the lights on the edge of 
the disk and on nothing else. Thus these are 

examples of nearest-neighbor-connected cel- 
lular spaces. 

the edge of the disk and on nothing else. 
Imagine all the disks in the fishnet ask- 
ing their neighbors for their state at the 
same time and switching states accord- 
ing to a definite rule. At the next tick of 
an abstract clock, the pattern of lights on 
the fishnet would in general look differ- 
ent. This is what Ulam and von Neumann 
called a nearest-neighbor-connected cel- 
lular space. It is the simplest case of a 
parallel computing space. You can also 
see that it can be imaged directly in hard- 
ware, so it is also the architecture for a 
physical parallel computing machine. 

We have not shown that such a device 
can compute. At worst, it is an elaborate 
light display. Whether or not such a 
cellular space can compute depends on 

the definition of computation. The short 
answer is that special cases of fishnets 
are provably universal computers in the 
standard Turing machine sense; that is, 
they can simulate the architecture of any 
other sequential machine. 

But there are other interpretations of 
computation that lie closer to the idea of 
simulation. For any given mathematical 
situation, we want to find the minimum 
cellular space that can do a simulation of 
it: At what degree of complexity does 
repeated iteration of the space, on which 
are coded both data and a solution algo- 
rithm, possess the power to come close to 
the solution of a complex problem? This 
depends on the complexity or degrees of 
freedom present in the problem. 

An extreme case of complexity is phys- 
ical systems with many degrees of free- 
dom. These systems are ordinarily de- 
scribed by field theories in a continuum 
for which the equations of motion are 
highly nonlinear partial differential equa- 
tions. Fluid dynamics is an example, and 
we will use it as a theoretical paradigm 
for many "large" physical systems. Be- 
cause of the high degree of nonlinearity, 
analytic solutions to the field equations 
for such systems are known only in spe- 
cial cases. The standard way to study 
such models is either to perform experi- 
ments or simulate them on computers of 
the usual digital type. 

Suppose a cellular space existed that 
evolved to a solution of a fluid system 
with given boundary conditions. Sup- 
pose also that we ask for the simplest 
possible such space that captured at least 
the qualitative and topological aspects of 
a solution. Later, one can worry about 
spaces that agree quantitatively with or- 
dinary simulations. The problem is three- 
fold: Find the least complex set of rules 
for updating the space; the simplest ge- 
ometry for a neighborhood; and a method 
of analysis for the collective modes and 
time evolution of such a system. 

At first sight, modeling the dynamics of 
large systems by cellular spaces seems far 
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too difficult to attempt. The general prob- 
lem of a so-called "inverse compiler"- 
given a partial differential system, find 
the rules and interconnection geometry 
that give a solution-would probably use 
up a non-polynomial function of comput- 
ing resources and so be impractical if not 
impossible. Nevertheless cellular spaces 
have been actively studied in recent years. 
Their modem name is cellular automata, 
and specific instances of them have sim- 
ulated interesting nonlinear systems. But 
until recently there was no example of a 
cellular automaton that simulated a large 
physical system, even in a rough, quali- 
tative way. 

Knowing that special cases of cellu- 
lar automata are capable of arbitrarily 
complex behavior is encouraging, but not 
very useful to a physicist. The impor- 
tant phenomenon in large physical sys- 
tems is not arbitrarily complex behav- 
ior, but the collective motion that de- 
velops as the system evolves, typically 
with a characteristic size of many ele- 
mentary length scales. The problem is to 
simulate such phenomena and, by using 
simulations, to try to understand the ori- 
gins of collective behavior from as many 
points of view as possible. Fluid dy- 
namics is filled with examples of collec- 
tive behavior-shocks, instabilities, vor- 
tices, vortex streets, vortex sheets, tur- 
bulence, to list a few. Any detennin- 
istic cellular-automaton model that at- 
tempts to describe non-equilibrium fluid 
dynamics must contain in it an itera- 
tive mechanism for developing collec- 
tive motion. Knowing this and using 
some very basic physics, we will con- 
struct a cellular automaton with the ap- 
propriate geometry and updating rules for 
fluid behavior. It will also be the sim- 
plest such model. The methods we use 
to do this are very conservative from the 
viewpoint of recent work on cellular au- 
tomata, but rather drastic compared to 
the approaches of standard mathematical 
physics. Presently there is a large gap 
between these two viewpoints. The sim- 

ulation of fluid dynamics by cellular au- uum description. A flow has physical 
tomata shows that there are other comple- conservation laws built-in, at least con- 
mentary and powerful ways to model phe- servation of mass and momentum. With 
nomena that would normally be the exclu- a few additional remarks one can include 
sive domain of partial differential equa- conservation of energy. The basic strat- 
tions. egy for deriving the Euler and Navier- 

Stokes equations of fluid dynamics is to 

The Example of Fluid Dynamics 

Fluid dynamics is an especially good 
large system for a cellular automaton for- 
mulation because there are two rich and 
complementary ways to picture fluid mo- 
tion. The kinetic picture (many simple 
atomic elements colliding rapidly with 
simple interactions) coincides with our in- 
tuitive picture of dynamics on a cellular 
space. Later we will exploit this analogy 
to construct a discrete model. 

The other and older way of approach- 
ing flow phenomena is through the partial 
differential equations that describe col- 
lective motions in dissipative fluids-the 
Navier-Stokes equations. These can be 
derived without any reference to an un- 
derlying atomic picture. The derivation 
relies on the idea of the continuum; it 
is simpler to grasp than the kinetic pic- 
ture and mathematically cleaner. Because 
the continuum argument leads to the cor- 
rect functional form of the Navier-Stokes 
equations, we spend some time describ- 
ing why it works. The continuum view 
of fluids will be called "coming down 
from above," and the microphysical view 
"coming up from below7' (Fig. 2). In 
the intersection of these two very differ- 
ent descriptions, we can trap the essential 
elements of a cellular-automaton model 
that leads to the Navier-Stokes equations. 
Through this review we wish to show that 
cellular automaton models are a natural 
and evolutionary idea and not an inven- 
tion come upon by accident. 

imbed these conservation laws into state- 
ments about special cases of the gen- 
eralized Stokes theorem. We use the 
usual Gauss and Stokes theorems, de- 
pending on dimension, and apply them 
to small surfaces and volumes that are 
still large enough to ignore an underly- 
ing microworld. The equations of fluid 
dynamics are derived with no reference 
to a ball-bearing picture of an underly- 
ing atomic world, but only with a serene 
reliance on the idea of a smooth flow 
in a continuum with some of Newton's 
laws added to connect to the observed 
world. As a model (for it is not a the- 
ory), the Navier-Stokes equations are a 
good example of how concepts derived 
from the intuition of daily experience can 
be remarkably successful in building ef- 
fective phenomenological models of very 
complex phenomena. It is useful to go 
through the continuum derivation of the 
Euler and Navier-Stokes equations pre- 
sented in "The Continuum Argument" for 
several reasons: First, the reasoning is 
short and clear; second, the concepts in- 
troduced such as the momentum flux ten- 
sor, will appear pervasively when we pass 
to discrete theories of fluids; third, we 
learn how few ingredients are really nec- 
essary to build a fluid model and so mark 
out that which is essential-the role of 
conservation laws. 

It is clear from its derivation that the 
Euler equation describing inviscid flows 
is essentially a geometrical equation. The 
extension to the full Navier-Stokes equa- 
tions, for flows with dissipation, contains 

Coming down from Above- only a minimal reference to an underlying 

The Continuum Description fluid microphysics, through the stress-rate 
of strain relation in the momentum stress 

The notion of a smooth flow of some tensor. So we see that continuum reason- 
quantity arises naturally from a contin- ing alone leads to nonlinear partial differ- 
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ential equations for large-scale physical 
observables that are a phenomenological 
description of fluid flow. This description 
is experimentally quite accurate but the- 
oretically incomplete. The coupling con- 
stants that determine the strength of the 
nonlinear terms-that is, the transport co- 
efficients such as viscosity-have a direct 
physical interpretation in a microworld 
picture. In the continuum approach how- 
ever, these must be measured and put in 
as data from the outside world. If we do 
not use some microscopic model for the 
fluid, the transport coefficients cannot be 
derived from first principles. 

Solution Techniques-The Creation 
of a Microworld. The Navier-Stokes 
equations are highly nonlinear; this is 
prototypical of field-theoretical descrip- 
tions of large physical systems. The non- 
linearity allows analytic solutions only 
for special cases and, in general, forces 
one to solve the system by approximation 
techniques. Invariably these are some 
form of perturbation methods in what- 
ever small parameters can be devised. 
Since there is no systematic way of apply- 
ing perturbation theory to highly nonlin- 
ear partial differential systems, the anal- 
ysis of the Navier-Stokes equations has 
been, and still remains, a patchwork of 
ingenious techniques that are designed to 
cover special parameter regimes and lirn- 
ited geometries. 

After an approximation method is cho- 
sen, the next step toward a solution is to 
discretize the approximate equations in a 
form suitable for use on a digital com- 
puter. This discretization is equivalent to 
introducing an artificial microworld. Its 
particular form is fixed by mathematical 
considerations of elegance and efficiency 
applied to simple arithmetic operations 
and the particular architecture of avail- 
able machines. So, even if we adopt the 
view that the molecular kinetics of a fluid 
is unimportant for describing the general 
features of many fluid phenomena, we are 
nevertheless forced to describe the sys- 

Fig. 2. Both the continuum view of fluids 
and the atomic picture lead to the Navier- 
Stokes equations but not without approxima- 

tern by a microworld with a particular 
microkinetics. The idea of a partial dif- 
ferential equation as a physical model is 
tied directly to finding an analytic solu- 
tion and is not particularly suited to ma- 
chine computation. In a sense, the geo- 
metrically motivated continuum picture is 
only a clever and convenient way of en- 
coding conservation laws into spaces with 
which we are comfortable. 

tions (dashed lines). The text emphasizes how 
cellular-automaton models embody the essen- 
tials of both points of view. 

Coming up from Below- 
The Kinetic Theory Description 

Kinetic theory models a fluid by us- 
ing an atomic picture and imposing New- 
tonian mechanics on the motions of the 
atoms. Atomic interactions are controlled 
by potentials, and the number of atomic 
elements is assumed to be very large. 
This attempt at fluid realism has an imme- 

continued on page 181 
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continued from page 178 

diate difficulty. We are unable to specify 
completely the initial state of the system 
or to follow its microdynamics. It fol- 
lows that we cannot use a microdynamics 
that is this detailed. The obvious strategy 
is to make a smoothened model that re- 
duces the number of degrees of freedom 
in the system to just a few. This reduc- 
tion assumes maximum ignorance of the 
details of the system below some time and 
distance scale and replaces exact data on 
events by probabilistic outcomes. Mea- 
surements are assumed to be average val- 
ues of quantities over large ensembles of 
representative systems. The assumption 
is that after a sufficiently long time these 
average observables are a close descrip- 
tion of the fluid. 

This approach seems very familiar and 
obvious from elementary courses in sta- 
tistical mechanics. But it is unclear how 
to go from a statistical-mechanical de- 
scription of an atomic system to the pre- 
diction of the details of collective motions 
that come from the evolution of that sys- 
tem. Fidelity to the atomic picture brings 
with it considerable mathematical diffi- 
culties. As we will see below and in 
"The Hilbert Contraction," the success of 
the derivation of the Navier-Stokes equa- 
tions from the kinetic theory picture- 
that one derives the Navier-Stokes equa- 
tions with the correct coefficients and not 
some other macrodynamics-is justified 
after the fact. 

Kinetic Theory and the Boltzmann 
Transport Equation. Complete infor- 
mation on the statistical description of a 
fluid or gas at, or near, thermal equi- 
librium is assumed to be contained in 
the one-particle phase-space distribution 
function f ( t ,  r, 'T) for the atomic con- 
stituents of the system. The variables 
t and r are the time and space coordi- 
nates of the atoms and T stands for all 
other phase-space coordinates (for exam- 
ple, momenta). In this rapid overview of 
kinetic transport theory, we will not dwell 
on the many and difficult questions raised 

by this description but keep to a level of 
precision consistent with a general under- 
standing of the basic ideas. 

The distribution function f is basically 
a weighting function that is used to define 
the mean values of physical observables. 
The relation 

defines the density function N (t, r)  for 
the particles in the system over all space. 
Therefore NdV is the mean number of 
particles in the volume dV. Here dV is 
a physical volume oc L~ whose character- 
istic length L is much larger than lm, the 
mean free path of a particle, and much 
smaller than Lg , some global length, such 
as the edge of a container for the whole 
gas. Thus lm Ã L << LÃˆ  

The basic equation of kinetic theory 
is the evolution equation for f (t, r ,  T) in 
the presence of gas collisions. Imagine 
first that the system has no collisions. 
Conservation of phase-space volumes, or 
Liouville's theorem, tells us that 

where d/dt is a total derivative. In an 
isolated system with no external fields, 
we can expand the total derivative as 

(We use the convention that repeated in- 
dices are summed over.) Equation 3 de- 
fines the free-streaming operator, which 
represents the local change in f per unit 
time caused by the independent motion of 
particles alone. 

Now imagine a simple isolated gas 
with collisions. If C (f) is a function that 
models the rate of change of the distribu- 
tion function f caused by collisions, then 
C (f)  dVdT is the rate of change per unit 
time of the number of molecules in the 
phase-space volume element dVdV. The 

Liouville statement now is modified tn 
become the transport equation: 

where C (f) is in general a highly nonlin- 
ear function off .  

Boltzmann first gave a simple approx- 
imation for the collision operator, which 
can be thought of as a gain-minus-loss 
(G - L) operator. A straightforward phys- 
ical argument defining its general struc- 
ture is presented below and is due to Lan- 
dau. 

The Boltzmann Form of the Collision 
Term. Let the particles in a two-body 
collision process have incoming distribu- 
tion functions gi and gi and outgoing dis- 
tribution functions gi and g^. Fixing at- 
tention on particle 1, assume that before 
colliding it occupies a phase-space region- 
dT1, and after collision it occupies dT\; 
similarly, particle 2 occupies dTi_ before 
colliding and d& afterwards. If particle 
1 undergoes a collision, d& will not in 
general be in dT l ,  and particle 1 is said 
to be lost from dT l .  From these consid- 
erations we can compute the functional 
structure of the general loss term for a 
binary collision. 

The probability of loss will be propor- 
tional to the product of four terms: (1) 
the number of particles of type 1 already 
in the volume, namely gi; (2) the num- 
ber of type-2 particles that enter the vol- 
ume from some phase-space range dF2, 
namely, g2dr2; (3) the total volume of 
allowed outgoing phase space, d m 2 ;  
and finally (4) a probability for the colli- 
sion process Pg{I'}. Now we sum over 
all possible allowed volumes of phase 
space. So the total number of losses L 
in the volume dV and from dT due to 
binary collision processes is 

Similarly, particle gain into the phase 
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space volume dl? can only come from re- 
versed channel processes g\, & + g ~ ,  gy., 
with fixed F i ,  and summed over all of Fi , 
F2, and F2, so 

The Boltzmann form for C( f )  is the net 
flow into the region, which is Q - L. Us- 
ing this form, we get the Boltzmann trans- 
port equation, a highly nonlinear integro- 
differential equation: 

In Part I1 we will use the same reason- 
ing to construct the Boltzmann equation 
for the discrete lattice gas. The explicit 
form of the lattice gas collision operator 
is much simpler than in standard kinetic 
models. 

Note that the Boltzmann form for the 
(Q - L) collision term implicitly assumes 
only two-body collisions. It also as- 
sumes the collisions are pairwise statis- 
tically independent events occurring at 
a single point with detailed, or at most 
semi-detailed, balance symmetry for col- 
lision probabilities. 

Solutions to the Boltzmann Trans- 
port Equation. Even though the Boltz- 
mann equation is intractable in general, 
by using entropy arguments (Boltzmann's 
H theorem), the following can be stated 
about possible functional forms for f ,  the 
one-particle distribution function. If the 
system is uniform in space, any form for 
f will relax monotonically to the global 
Maxwell-Boltzmann form: 

in which the macroscopic variables p, 
v, and T (density, macrovelocity, and 
temperature) are independent of position, 
or global. In the non-equilibrium case, 
with a soft space dependence, any distri- 
bution function will relax monotonically 

RANGE OF THE BOLTZMANN TRANSPORT EQUATION 

The rigorous range of physical parameters in which the Boltzrnann transport 
equation is mathematically meaningful is 

N -  ̂QO, a -  ̂0 such that (NV') -  ̂1;' 

where N is the number of particles, 
m is the mass of each particle, 
a is the range of the force or the effective interaction ball, 
Im is the mean free path, 
K is a constant. 

These conditions imply a dilute gas, binary collisions, and slowly varying spatial 
dependence (that is, slow space gradients). As an additional axiom we require 
that there be no long-range forces in the sense of photon excitations, etc. 

in velocity space to a local Maxwell- 
Boltzmann form. This means that p, v, 
and T will depend on space as well as 
time. These local distribution functions 
are solutions to the Boltzmann transport 
equation. For the non-uniform case, one 
gets a picture of the full solution as an en- 
semble of local Maxwell-Boltzmann dis- 
tributions covering the description space 
of the fluid, with some gluing conditions 
providing the consistency of the patching. 

Recovering Macrodynamics-The Eu- 
ler Equations. If we assume a simple 
fluid and neglect all dissipative processes 
(viscosity, heat transfer, etc.), we can 
quickly derive the Euler equations (pre- 
sented in "The Continuum Argument") 
from the Boltzmann transport equation. 
But first we need the notion of average 
quantities and some observations about 
collisions in a dissipation-free system. 

As before, let p(t, r)  = f f ( t ,  r ,  T) dI' 
be the density field of the gas. Then a 
mean gas velocity v = f v'f (t, r ,  I?) dT, 
where v' is a microvelocity. We will use v 
as a macroscopic variable that character- 

izes cells whose length L in any direction 
is much, much greater than the mean free 
path in the gas, lm; that is, L ^> lm.  

Since, by assumption, collisions pre- 
serve conservation laws exactly, the mo- 
ments of C (  f) ,  in particular the inte- 
grals f C (  f ) d r  and f v  C (  f ) d F ,  are 
equal to zero (similarly for any conserved 
quantity). We use this fact by integrat- 
ing the Boltzmann equation in two ways: 
/' (B.E.) dl? and f v(B.E.) d r  (where B.E. 
stands for the Boltzmann equation). The 
first integral gives the continuity equa- 
tion: 

9tp + Qi(pvi) = 0. (6)  

The second integral gives the momentum 
tensor equation: 

where the momentum flux tensor nik is 
given by 

In order to derive the Euler equation 
for ideal gases with the usual form for 

Los Alamos Science Special Issue 1987 



Discrete Fluids 

the momentum flux tensor, we need to 
assume that each region in the gas has 
a local Maxwell-Boltzmann distribution. 
With this assumption one can show that 
the momentum flux tensor in Eq. 7 has 
the following form: 

where p is the pressure. This form of 
IIlk gives the same Euler equation that we 
found by general continuum arguments. 
(We will see in Part 11 that the form of 

for the totally discrete fluid is not so 
simple but depends upon the geometry of 
the underlying lattice. Again by assuming 
a form for the local distribution function 
(the appropriate form will turn out to be 
Ferrni-Dirac rather than Boltzmann), IIIk 
will reduce to a form that gives the lattice 
Euler equation.) 

Recovering the Navier-Stokes Equa- 
tion. The derivation of the Navier-Stokes 
equation from the kinetic theory picture 
is more involved and requires us to face 
the full Boltzmann equation. Hilbert ac- 
complished this through a beautiful argu- 
ment that relies on a spatial-gradient per- 
turbation expansion around some single- 
particle distribution function fr assumed 
to be given at to.  In "The Hilbert Con- 
traction" we discuss the main outline of 
his argument emphasizing the assump- 
tions involved and their limitations. Here 
we will summarize his argument. Hilbert 
was able to show that the evolution off 
for times t > to  is given in terms of its 
initial data at to by the first three moments 
of f ,  namely the familiar macroscopic 
variables p (density), v (mean velocity), 
and T (temperature). In other words, he 
was able to contract this many-degree-of- 
freedom system down to a low-dimen- 
sional descriptive space whose variables 
are the same as those used in the usual hy- 
drodynamical description. The beauty of 
Hilbert's proof is that it is constructive. 
It explicitly displays a recursive closed 
tower of constraint relations on the mo- 
ments of f  that come directly from the 

THE HIL NT 
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Boltzmann equation. The zero-order re- 
lation gives the Euler equations and the 
second-order relation gives the Navier- 
Stokes equations. However, Hilbert's 
method is an asymptotic functional ex- 
pansion, so that the higher order terms 
take one away from ordinary fluids rather 
than closer to them. Nevertheless, solv- 
ing explicitly for the terms in the func- 
tional expansion provides a way of eval- 
uating transport coefficients such as vis- 
cosity. (See the "Hilbert Contraction" for 
more discussion.) 

Summary of the Kinetic Theory Pic- 
ture. Our review of the kinetic theory 
description of fluids introduced a num- 
ber of important concepts: the idea of 
local thermal equilibrium; the character- 
ization of an equilibrium state by a few 
macroscopic obsemables; the Boltzmann 
transport equation for systems of many 
identical objects (with ordinary statistics) 
in collision; and the fact that a solution 
to the Boltzmann transport equation is 
an ensemble of equilibrium states. In 
"The Hilbert Contraction" we introduced 
the linear approximation to the Boltz- 
maim equation with which one can de- 
rive the Navier-Stokes equations for sys- 
tems not too far (in an appropriate sense) 
from equilibrium in terms of these same 
macroscopic obsemables (density, pres- 
sure, temperature, e t~.) .  We then outlined 
a method for calculating the coupling 
constants in the Navier-Stokes system- 
that is, the strengths of the nonlinear 
terms-as a function of any particular mi- 
crodynarnics. 

This review was intended to give a fla- 
vor for the chain of reasoning involved. 
We will use this chain again in the to- 
tally discrete lattice world. However, just 
as important as understanding the kinetic 
theory viewpoint is keeping in mind its 
limitations. In particular, notice that per- 
turbation theory was the main tool used 
for going from the exact Boltzmann trans- 
port equation to the Navier-Stokes equa- 
tions. We did not discover more pow- 
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erful techniques for finding solutions to 
the Navier-Stokes equations than we had 
before. To go from the Boltzmann to 
the Navier-Stokes description, we made 
many smoothness assumptions in various 
probabilistic disguises; in other words, 
we recreated an approximation to the con- 
tinuum. It is true one could compute (at 
least for relatively simple systems) the 
transport coefficients, but in a sense these 
coefficients are a property of microkinet- 
ics, not macrodynamics. 

We are at a point where we can ask 
some questions about the emergence of 
macrodynamics from microscopic phys- 
ics. It is clear by now that microscopic 
conservation laws, those of mass, mo- 
mentum, and energy are crucial in fix- 
ing the form of large-scale dynamics. 
These are in a sense sacred. But one 
can question the importance of the de- 
scription of individual collisions. How 
detailed must micromechanics be to gen- 
erate the qualitative behavior predicted 
by the Navier-Stokes equations? Can 
it be done with simple collisions and 
very few classes of them? There exists 
a whole collection of equations whose 
functional form is very nearly that of 
the Navier-Stokes equations. What mi- 
croworlds generate these? Do we have 
to be exactly at the Navier-Stokes equa- 
tions to generate the qualitative behavior 
and numerical values that we derive from 
the Navier-Stokes equations or from real 
fluid experiments? Is it possible to de- 
sign a collection of synthetic microworlds 
that could be considered local-interaction 
board games, all having Navier-Stokes 
macrodynamics? In other words, does 
the detailed microphysics of fluids get 
washed out of the macrodynamical pic- 
ture under very rapid iteration of the de- 
terministic system? If the microgame is 
simple enough to update it deterministi- 
cally on a parallel machine, is the density 
of states required to see everything we 
see in ordinary Navier-Stokes simulations 
much smaller than the density of atoms in 
real physical fluids? If so, these synthetic 

INGREDIENTS FOR THE EMERGENCE OF MACRODYNAM1CS 

1. Local Thermodynamic Equilibrium 
in a Small Region Rm 

Local thermodynamic ensemble is 
described by one-particle distribution function 
of the form pe-E(p+"'/T 

Sm is typically on the order of a mean free path 

2. Patching of Local Ensembles Using 
Microscopic Conservation Laws 

Form of the boundary conditions 
is dictated by conservation laws 

/ 

3. Emergence of Dynamic 
Scale Separation 

SG >> Su >> Sm 

SG - global scale 

SM scale of collective motion 

Sm N microscale 

Fig. 3. Three ingredients are needed for the 
emergence of macrodynamics: local thermo- 
dynamic equilibrium, conservation laws, and 

microworlds become a potentially power- 
ful analytic tool. 

Our approach in building a cellular 
space is to move away from the idea 
of a fluid state and focus instead on the 
idea of the macrodynamics of a many- 
element system. In abstract terms, we 
want to devise the simplest determinis- 
tic local game made of a collection of 
few-bit, finite-state machines that has the 

scale separation between microkinetics and 
collective motion. 

Navier-Stokes equations as its macrody- 
namical description. From our brief look 
at kinetic transport theory, we can ab- 
stract the essential features of such a 
game (Fig. 3). The many-element sys- 
tem must be capable of supporting a 
notion of local thermodynamic equilib- 
rium and must also include local micro- 
scopic conservation laws. The state of 
a real fluid can be imagined as a col- 
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lection of equilibrium distribution func- 
tions whose macroscopic parameters are 
unconstrained. These distribution func- 
tions have a Maxwell-Boltzmann form. 
e E ( p > " ) I T .  If these distribution functions 
are made to deviate slightly from equilib- 
rium, then local conservation laws impose 
consistency conditions among their pa- 
rameters, which become constrained vari- 
ables. These consistency conditions are 
the macrodynamical equations necessary 
to put a consistent equilibrium function 
description onto the many-element sys- 
tem. In physical fluids they are the 
Navier-Stokes equations. This is the gen- 
eral setup that will guide us in creating a 
lattice model. 

Evolution of Discrete 
Fluid Models 

Continuous Network Models. The Na- 
vier-Stokes equations, however derived, 
are analytically intractable, except in a 
few special cases for especially clean ge- 
ometries. Fortunately, one can avoid 
them altogether for many problems, such 
as shocks in certain geometries. The 
strategy is to rephrase the problem in a 
very simple phase space and solve the 
Boltzmann transport equation directly. If 
a single type of particle is constrained 
to move continuously only along a reg- 
ular grid, the Boltzmann equation is so 
tightly constrained that it has simple ana- 
lytic solutions. In the early 1960s Broad- 
well and others applied this simplified 
method of analysis to the dynamics of 
shock problems. Their numerical results 
agreed closely with much more elabo- 
rate computer modeling from the Navier- 
Stokes equations. However, there was no 
real insight into why such a calculation 
in such a simplified microworld should 
give such accurate answers. The accu- 
racy of the limited phase-space approach 
was considered an anomaly. 

Discrete Skeletal Models. The next 
development in discrete fluid theory was 
a discrete modification of the continuous- 
speed network models of the Broadwell 
class. By forming a loose analogy to the 
structure of the Ising model (spins on a 
lattice), Hardy, de Pazzis, and Pomeau 
created the first minimalist fluid model on 
a two-dimensional square lattice. It was 
a simple, binary-valued, nearest-neighbor 
gas with a single species of molecule, 
limited to binary collisions. The new 
feature was a totally discrete velocity and 
state space for the gas. Particles hopped 
from one site to the next without a notion 
of continuous movement between sites. 
Particles were confined to the vertices 
of the network, and the velocity vector 
of each particle could point in only one 
of four directions. Since there was no 
natural way to deal with bound states, 
these authors imposed the arbitrary rule 
that the maximum number of particles 
occupying any vertex be four. 

This simple model possessed remark- 
able properties including local therrno- 
dynamic equilibrium and the emergence 
of a scale separation; that is, the typ- 
ical collective motion scale L is much 
greater than the microscopic mean free 
path lm; L >> lm. However, the macrody- 
namics that emerged was not that of the 
Navier-Stokes equations but a more com- 
plex one with unphysical features. The 
square model was the first example of 
rich dynamics emerging wholly on a cel- 
lular space. It had all the right ingredi- 
ents except one: isotropy under the ro- 
tation group of the lattice. The momen- 
tum flux tensor must reduce to a scalar 
for isotropy, but this is impossible with 
a square lattice. In two dimensions the 
neighborhood that has the minimal re- 
quired symmetry and tiles the plane is a 
hexagonal neighborhood. In Part I1 we 
will present the simple hexagonal model, 
analyze it mathematically, and describe 
the simulations of fluid phenomena that 
have been done so far. 
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We can now list the ingredients we need to build the simplest cellular-space world 
with a dynamics that reproduces the collective behavior predicted by the com~ressible 

The only way to make this hexagonal lattice gas simpler is to lower the rotation 
symmetry of the lattice, remove collision rules, or break a conservation law. In a 
two-dimensional universe with boundaries, any such modification will not give Navier- 

/stokes dynamics. Left as it is. the model will. Adding attributes to the model, such 

incompressible Navier-Stokes equations: 

A population of identical particles, each with unit mass and moving with the same 
average speed c. 

A totally discrete phase space (discrete values of x ,  y and discrete particle-velocity 
directions) and discrete time t .  Discrete time means that the particles hop from 
site to site. 
A lattice on which the particles reside only at the vertices. In the simplest case 
the lattice is regular and has a hexagonal neighborhood to guarantee an isotropic 
momentum flux tensor. We use a triangular lattice for convenience. 
A minimum set of collision rules that define symmetric binary and triple collisions 
such that momentum and particle number are conserved (Fig. 4). 
An exclusion principle so that at each vertex no two particles can have identical 
velocities. This limits the maximum number of particles at a vertex to six, each one 
having a velocity that points in one of the six directions defined by the hexagonal 
neighborhood. 
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as different types of particles, different speeds, enlarged neighborhoods, or weighted 
collision rules, will give Navier-Stokes behavior with different equations of state and 
different adjustable parameters such as the Reynolds number (see the discussion in Part 
111). The hexagonal model defined by the five ingredients listed above is the simplest 
model that gives Navier-Stokes behavior in a sharply defined parameter regime. 

At this point it is instructive to look at the complete table of allowed states for 
the model (Fig. 5). The states and collision rules can be expressed by Boolean logic 

Fig 4. SCATTERING RULES FOR SIMPLE HEXAGONAL MODEL 

Scattering Rules 

Two-Body Scattering Rules 

Three-Body Scattering Rules 

Other Configurations Don't Scatter 

For Example 

Only a head-on collision of 
two particles causes scatter- 
ing, that is, the particles change 
direction by Â±60Â The par- 
ticles then continue to move 
at constant speed (one node 
per time stop) in the new di- 
rection. 

Three particles colliding at 1 20Â 
angles to each other change 
directions by 60' in the scat- 
tering process. All other con- 
figurations of these particles 
do not affect particle direc- 
tion. 

Results of Scattering Plus Transport 

Pure Transport 

In most configurations parti- 
cles do not scatter, that is, 
they do not change direction 
but are simply transported at 
constant speed. 

pi - 
-- 

t 
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operations with the two allowed values taken as 0 and 1. From this organization scheme 
we see that the hexagonal lattice gas can be seen as a Boolean parallel computer. In 
fact, a large parallel machine can be constructed to implement part or all of the state 
table locally with Boolean operations alone. Our simulations were done this way and 
provide the first example of the programming of a cellular-automaton, or cellular-space, 
machine that evolves the dynamics of a many-degrees-of-freedom, nonlinear physical 
system. 

STATE TABLE FOR HEXAGONAL MODEL 

Right Three Bits 

Scattering Rules for Simple 
Hexagonal Model in 6-Bit Notation 

Two-Body Rule 

Three-Body Rule 
(010, 101) -.Ã‘Ã‘ (101, 010) 

Additional Rules for Extended 
Hexagonal Model 

Four-Body Rule 

Fig. 5. All possible states of the hexagonal k t -  and the maximally occupied state shown in the are written beside the table. All other states do 
tice gas are shown in  the state table. Each lower right hand corner of the table is written not result in  scattering. The extended hexag- 
state can be expressed in 6-bit notation (a (111, 111). Collision states for the simplest onal model includes scattering rules for four- 
combination of 3 right bits and 3 left bits). For hexagonal model are shown in  red and shaded body states (shaded in  gray). The extended 
example, the empty state is written (000,000) in gray. The scattering rules for these states model lowers the viscosity of the lattice gas. 
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PARTICLE DIRECTIONS 
IN THE HEXAGONAL MODEL 

Fig. 6. The velocity vector of each particle 

can point in one of six possible directions. All 
particles have the same speed c. 

Theoretical Analysis of the Discrete Lattice Gas 

Before presenting the results of simulations with the lattice-gas automaton, we will 
analyze its behavior theoretically. The setup we work on is a regular triangular grid 
with hexagonal neighborhood. The natural explicit coordinate system for a single-speed, 
six-directional world (Fig. 6) is the set of unit vectors: 

{cos (y) ,  sin (y)} ,  f f =  Q-6. 

One never requires this much detail except to work out explicit tensor structures and 
scalar products particular to the hexagonal model case, but the index conventions 
are important to avoid disorientation. From now on the Greek indices a, /3, - . label 

. .A A 

lattice direction indices; i ,  j, k, . . . are lattice unit vectors and i , j , k label space indices 
( x i ,  XT.. . . .); on a square lattice we have r  = ( x i ,  x2)  = ( x ,  y ). 

The first thing we will look at is pure transport on the lattice with no collisions. 
Because the basic space is a discrete lattice with a fundamental lattice spacing, rather 
than a continuum, a shadow of the lattice is induced into the coupling constant of the 
theory, namely the viscosity. This lattice effect is not obvious, but we will make it so 
by looking at transport on the lattice in detail. As a corollary we will derive the usual 
Euler equations for the "macroscopic" flow of the lattice gas. 

To do a quick analysis on lattice models we lift the restriction of a deterministic 
gas and pass to a probabilistic description familiar from kinetic theory; then we can use 
familiar stochastic and kinetic theory tools outlined in Part I of this article. In going 
from a continuous to a discrete probabilistic formalism we introduce the lattice form 
of the single-particle distribution function by making the identifications 

and 

To begin we write the master equation for fg in the absence of collisions. The 
master equation expresses conservation of probability. For simplicity we write it for a 
square lattice with the following conventions: ng(r +&, t )  = number of particles in the 
direction /3 at the node r  +b at time t .  The master equation for the system, neglecting 
collisions and written in a continuum notation for convenience, is 

f p ( r + h , ^ k ) - f p ( r , t ) = O ,  with h = i & , k = d , ,  

where di  , dx << 1. 

If we expand the first term in the master equation out to o 2 ( h ,  k )  using the Taylor 
series expansion f  (xo + h ,  yo + k )  = xm\ $(hax + kQy)Af (xo, yo) + Rm , we obtain 
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To lowest order in h and k ,  we have 

which has the standard form of the kinetic theory transport equation in the absence of 
collisions. If we include collisions, the full Boltzmann transport equations schematically 
become 

aff3 + if3 - Vf/3 = (̂ (f 

where Cg( f )  is the collision operator on the lattice. The form of the lattice collision 
operator will tell us a great deal about how the model works, but for the moment we 
just look at the general structure of the "macroscopic" equations for the lattice gas to 
the lowest order in the lattice expansion parameters. 

As in standard kinetic theory, the usual zero integrals of the motion hold, since 
the lattice model is assumed to have some kind of detailed balance (that is, microscopic 
reversibility of reaction pathways). Accordingly xf3 CD( f )  = 0 and xf3 iPCp( f )  = 0 
for a skeletal gas. Following the kinetic theory procedure, we write the continuity and 
momentum equations that follow from these conditions as: 

and 

where the tensor I I i j  is defined as 

So far we have kept only the leading terms of the Taylor series expansion in 
the scaling factors that relate to the discreteness of the lattice. It's easy to show that 
keeping quadratic terms in this lattice-size expansion leaves the continuity equation 
invariant but alters the momentum equation by introducing a free-streaming correction 
to the measured viscosity. This rather elegant way of viewing this correction was first 
developed by D. Levermore. The correction comes from breaking the form of a Galilean 
covariant derivative and is a geometrical effect. Specifically, to second order in the 
lattice size expansion, the momentum equation does not decompose simply into factors 
of these covariant derivatives but instead the expansion introduces a nonvanishing 
covariant-breaking term: 

Noncovariant term = x{(iti)i aia, + ((io); a)}ipfp.  
f3 

This term is of the same order as those terms that contribute to the viscosity. Later we 
will show how to use the Chapman-Enskog expansion to compute an explicit form for 
the lattice-gas viscosity. 

The Chapman-Enskog Expansion and the Direct Expansion. The form of I I i j  
depends on the form off,  the solution to the full lattice Boltzmann transport equation. 
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By Hilbert's construction we know that an efficient expansion can be developed in terms 
of the collision invariants of the model up to powers of terms linear in the gradient 
of the macroscopic velocity. In whatever perturbation expansion off  we choose, the 
coefficients in the expansion are fixed by solving for them under the Lagrange multiplier 
constraints of mass and momentum conservation: p = fP and (pv) = Ep iPfD. In 
the simple hexagonal model there is no explicit mechanism provided for storing energy 
in internal state space, so there is no independent energy equation. 

For the lattice case, the Chapman-Enskog version of Hilbert's expansion reduces 
to an expansion in all available scalar products using the vectors 6, v and the vector 

* 
operator 9 . The expansion is made around the global equilibrium solution for v = 0, 

+ 
which we will call NP and terms are kept up to those linear in 9 . The relevant scalar 
products are 

The systematic expansion becomes 

In the usual kinetic theory approach the coefficients a and f3 can be found by 
neglecting collisions and ,131, the gradient term, can be determined only by an explicit 
solution to the full Boltzmann equation including collision terms. In this way one 
obtains the viscosity in terms of PI. For the discrete lattice, however, both Q and 
Ql depend on the explicit form of the solution to the full Boltzmann equation with 
collisions. We also need that form to recover the correction to the raw viscosity that, 
as mentioned in the last section, comes from pure translation effects on the lattice. 

Given that we have to use the full solution to the Boltzmann transport equation 
almost immediately, we now derive its structure, find the general and equilibrium 
solution, and then use a direct expansion to fix both /3 and PI. In the process we will 
recover the Euler equations for inviscid flow and the Navier-Stokes equations for the 
flow with dissipation. 

The Lattice Collision Operator and the Solution to the Lattice Boltzmann 
Transport Equation. We will write down the discrete form of the Boltzmann equation, 
especially noting the collision operator, for a number of reasons. First, writing the 
explicit form of the collision kernel builds up an intuition of how the heart of the model 
works; second, we can show in a few lines that the Fermi-Dirac distribution satisfies the 
lattice gas Boltzmann equation; third, knowing this, we can quickly compute the lattice 
form of the Euler equations; fourth, we can see that many properties of the lattice-gas 
model are independent of the types of collisions involved and come only from the form 
of the Fermi-Dirac distribution. 

Collision operators for lattice gases with continuous speeds were derived by Broad- 
well, Harris, and other early workers on continuum lattice-gas systems. For totally 
discrete lattice gases with an exclusion principle, we must be careful to apply this prin- 
ciple correctly. It is similar to the case of quasi-particles in quantum Fermi liquids. 
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The construction reduces to following definitions of collision operators introduced in 
the section on classical kinetic theory and counting properly. 

Taking any hexagonal neighborhood, let i be one of the six directions and use ,. A . . 
the convention i ,  i + 1, i + 2,.  . . = I+, + + I ,  ip=;+2,. . . for convenience. (Later we 
will return to our original notation.) First consider binary collisions alone, and assume 
detailed balance, which implies microscopic reversibility of a collision at each vertex. 
One need not use detailed balance, but other balancing schemes are algebraically tedious 
and conceptually similar extensions of this basic case. Given a vertex at (r, t )  we 
compute the gain and loss of particles into a neighborhood along a fixed direction, say 
i.  This is, by definition, the collision kernel for binary processes. First compute the 
number of particles thrown in a collision into a phase-space region along the direction 
i. Let ni(r, t) be the probability that a particle is at the node (r, t) and has a velocity 
in the i th direction. 

If a particle scatters into a vector direction i ,  it must have come from binary 
processes along directions (i + 1 and i + 4) or (i + 2 and i + 5) (see the two-body 
scattering rules in Fig. 4). Interpreted as probabilities for the two events to happen, 
the probability for gain in the i direction due to binary processes alone is 

where = (1 - nk). The a ' s  impose the exclusion rule in the output channel, namely, 
that a particle cannot scatter there if one is already present. 

Loss of a particle from direction i can occur only by the binary collision (i + 3, i), 
and this can happen for each of the two choices of gain collisions separately. So 
we have (-2nini+3fii+lfii+2Ei+4fii+5) as the probability for loss in the i direction due 
to binary collisions alone. Note that these products can be compactly expressed as 
hifii+311:=0(1 - n;) where fii = e. 

The three-body gain-loss term can be written down by inspection in the same 
way as the binary term. The complete two- and three-body collision term for the ith 
direction, in compact notation, is 

For extensive calculations more compact notations are easily devised, but this one 
clearly brings out the essential idea in constructing arbitrary collision schema. With 
some minor modifications this form for the collision operator can be reinterpreted as a 
master equation for a transition process, which is useful as a starting point for a detailed 
microkinetic analysis by stochastic methods. 

Given the C( f )  for two- and three-body collisions in the above compact form, 
and given detailed balance, we show that C (  fg) = 0 for the Fermi-Dirac distribution. 
The proof is simple and well known from quantum Fermi-liquid theory where the same 
functional form for the collision operator appears but with a different interpretation. 

If n is a Fermi-Dirac distribution, it has the form (1 + eE)-I = n(E) where E is 
expanded in collision invariants, in this case particle number and momentum. Then 
note that & = fi = e E ,  the form of the Maxwell-Boltzmann distribution. This is 
also the form of the collision kernel, and the exponential terms just contain the sum 
of momenta in the collision. Since this sum is conserved, each collision term (binary, 
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triple, etc.) vanishes separately, because of the exclusion principle. So the solution is a 
Fermi-Dirac distribution. This proof also shows that as long as conservation laws of any 
kind are embodied in the collision term, each type of collision is separately zero under 
the Ferrni-Dirac distribution. Accordingly, the Fermi-Dirac solution is universal across 
collision types. This implies that one cannot alter the character of the Fermi-Dirac 
distribution in the lattice gas by adding collision types that respect collision invariants. 

Since fg is now assumed to be a Ferrni-Dirac distribution, we take it as 

with 

(Here we have returned to our original conventions for 6.) The equilibrium value for 
fj3 at v = 0, namely N J ~ = O ,  is where p is the density. Expanding the Fermi-Dirac form 
for fa about this equilibrium value gives us 

the same form as the Chapman-Enskog expansion (Eq. 15). To fix a and 0 we use 
number and momentum conservation as constraints, so that fg becomes 

where we have taken the particle speed as 1 (c = 1). The coefficient g(p) is 

If we substitute this result for fg in the momentum tensor (Eq. 13) and do the sum 
over 0, the particle directions, we have 

The lattice Euler equation (Eq. 12) thus becomes 

In the usual Euler equation g (p) = 1. Here g (p) is the lattice correction to the convective 
term due to the explicit lattice breaking of Galilean invariance. The equation of state 
for Eq. 17 is 
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For general single-speed models with panicle speed c and b velocity vectors in D 
dimensions, the result above generalizes to 

and 
D b - 2 p  

g(p) = --. D + 2  b - p  

These forms depend only on the structure of tensor products of ;'Ã in D dimensions. 
When we discuss the full Navier-Stokes equations, we will show how to absorb 

the g(p) Galilean-invariance-breaking term in Eq. 17 into a rescaling of variables. 

Isotropy and The Momentum Tensor. We will go on to discuss viscosity and 
the lattice form of the Navier-Stokes equation, but first we comment briefly on how 
the structure of the momentum tensor depends on the geometry of the lattice. Those 
interested in all the details can find them discussed from several viewpoints in Frisch, 
d1Humi?res, Hasslacher, Lallemand, and Pomeau 1987. 

By definition II;, = ,̂g(i/3);(i/3)jfi3, where fg  is determined by the Chapman- 
Enskog, or direct, expansion (Eq. 15). Isotropy implies invariance under rotations 
and reflections; tensors that are isotropic are proportional to a scalar. Define the 
tensors E(")  = xo(?o)i,  . . . (;'o);,, . For E(" )  with regular b-sided polygons, we can derive 
conditions on b for E(") to be isotropic. These conditions are 

For b = 4, the case of the HPP (Hardy, de Pazzis, and Pomeau) square lattice, E^  
is not isotropic. For b = 6, the hexagonal neighborhood case, all tensors up to n = 5 
are isotropic. 

Using the Chapman-Enskog expansion for fa and the notation above for tensors, 
IIv has the following tensor structure. 

where we are following the discussion of Wolfram. The momentum stress tensor must 
be isotropic up to E ( ~ )  in order that the leading terms in the momentum equation 
Â¥(correspondin to the convective and viscous terms in the Navier-Stokes equation) be 
isotropic. For the square model, the original discrete-lattice model, we have nonisotropy 
manifested in two places through the momentum flux tensor. 

where 

See Frisch et al. for further discussion. 
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The nonisotropy implies that we do not get a Navier-Stokes type equation for the 
square lattice. For the hexagonal model, (3= 6, isotropy is maintained through order 
E^. By using general considerations on tensor structures for polygons and polyhedra 
in D-dimensional space, one can quickly arrive at probable models for Navier-Stokes 
dynamics in any dimension. The starting point is that isotropy, or the lack of it, in both 
convective and viscous terms (the Euler and the Navier-Stokes equations), is controlled 
completely by the geometry of the underlying lattice. This crucial point was missed by 
all earlier workers on lattice models who thought that the geometry of the underlying 
lattice was irrelevant. 

Viscosity for Lattice Gas Models. In "The Continuum Argument" we saw that the 
general form of the compressible Navier-Stokes equation with bulk viscosity C, = 0 is 

where v is the kniematic shear viscosity. To derive this form for the discrete model, 
one must solve for II;, using both the Chapman-Enskog approximation for f p  and 
the momentum-conservation equation. We noted earlier that the momentum equation 
contained corrections as powers of the lattice spacing but chose to ignore these at first 
pass. However, if we use the full Taylor expansion developed in the lattice-size scaling, 
we find that the contribution to the viscous term of the momentum equation is -ipX^v. 
Note that the correction to the viscosity is a constant (see Eq. 19) that depends only 
on the lattice and dimension and is independent of the scattering-rule set. This extra 
noncovariant-derivative contribution to the viscosity must be subtracted from the bare 
viscosity calculated from the normal perturbation expansion to get the renormalized 
viscosity, which is the one actually measured in the lattice gas. In other words, the 
bare coupling constant of the lattice gas model gets "dressed" by this constant amount, 
owing to the discrete vacuum that the particle must pass through, to become the physical 
lattice-gas viscosity. 

Viscosity is a coupling constant and can be found by any method that can isolate 
the Q\ term in the Chapman-Enskog expansion. The simplest methods involve solving 
for the eigenvalues and right eigenvectors of the linearized collision operator, which 
is a tedious exercise in linear algebra. Using the results of such a calculation, we can 
write the Navier-Stokes form of the momentum equation in which the viscosity v(p) 
appears explicitly: 

at (pvi ) + 9, nij = 9, sij , 

where the momentum tensor II;; and the viscosity stress tensor are 

and 
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The coefficient c: is given by 

and cs can be identified as the speed of sound. For the simple hexagonal model 
c = I /&,  and the viscosity is given by 

where d = 9, that is, the mass density per cell. (The - in the viscosity was mentioned 
above as the noncovariant correction due to the finite lattice size.) 

The Incompressible Limit. Many features of low Mach number (M = v/c, <? 
1) flows in an ordinary gas can be described by the incompressible Navier-Stokes 
equations: 

atv + v  . vv = -vp + U V ~ V  (20) 

and 

We end this theoretical analysis by showing under what conditions we recover these 
equations for lattice gases. One way is to freeze the density everywhere except in the 
pressure term of the momentum equation (Eq. 18). Then, in the low-velocity limit, we 
can write the lattice Navier-Stokes equations as 

and 

where p = po + p' and we allow density fluctuations in the pressure term only. As it 
stands, Eq. 21 is not Galilean invariant. To make it so, we must scale away the g(po) 
term in a consistent way. We rescale time and viscosity as follows: 

t 
t ~r - and 

g (PO) 

To be more precise, we do an e expansion of the momentum equation, where e is 
the same order as the global lattice size Lg (see Frisch et al. for details), and rescale 
the variables as follows: 

and 

where e-I is on the order of the global lattice size Lg .  (Note that this rescaling 
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SIMULATED VELOCITY PROFILE 

Fig. 7. The predicted velocity profile was ob- 
tained in a low-velocity lattice gas simulation 
of two- dimensional flow in a channel with vis- 
cous boundaries (Kadanoff, McNamara, and 
Zanetti 1987). 

0 10 20 30 
Lattice Row along Channel Width 

of variables keeps the Reynolds number fixed.) Now all the relevant terms in the 
momentum equation are of 0(e3) and higher order terms are 0(e4) or smaller. So to 
leading order (where VI  means &) we get 

Thus we recover the incompressible Navier-Stokes equations. To obtain this result, 
we have done a fixed-Reynolds-number, large-scale, low-Mach-number expansion and 
Galilean invariance has been restored, at least formally, by a time resealing. 

Simulations of Fluid Dynamics 
with the Hexagonal Lattice Gas Automaton 

In the last two years several groups in the United States and France have done 
simulations of fluid-dynamical phenomena using the hexagonal lattice-gas automaton. 
The purpose of these simulations was twofold: first, to check the internal consistency of 
the automaton, and second, to determine, by both qualitative and quantitative measures, 
whether the model behaves the same or nearly the same as the known analytic and 
numerical solutions of the Navier-Stokes equations. 

The classes of experiments done can be grouped roughly as free flows, flow 
instabilities, flows past objects, and flows in channels or pipes. These simulations 
were run in a range of Reynolds numbers between 100 and 700 (and for relatively low 
mean flow velocities, so that the fluid is nearly incompressible). We first checked to 
see whether the automaton developed various classic instabilities when triggered by 
two types of mechanisms, external perturbations and internal noise. The two classic 
instabilities studied were the Kelvin-Helmholtz instability of two opposing shear flows 
and the Rayleigh-Taylor instability. We describe the Kelvin-Helmholtz instability in 
some detail. 

In the Kelvin-Helmholtz instability one is looking for the development of a final- 
state vortex structure of appropriate vortex polarity. From an initial state of two op- 
posing flows undergoing shear, the detailed development of the instability depends on 
the initial perturbation of the flows. Left unperturbed, except by internal noise in the 
automaton, at first the two opposing flows develop velocity fields that signal the devel- 
opment of a boundary layer, then sets of vortices develop in these boundary layers, and 
finally vortex interactions occur that trigger a large-scale instability and the develop- 
ment of large-vortex final states. The same pattern appears in standard two-dimensional 
numerical simulations of the Navier-Stokes equations near the incompressible regime. 
No pathological non-Navier-Stokes behavior was observed. These results extend over 
the entire range of Reynolds numbers (100-700) run with the simple hexagonal model. 
It is notable that the Kelvin-Helmholtz instability is self-starting due to the automaton 
internal noise, and the instability proceeds rapidly. 

The Rayleigh-Taylor instability was simulated by a French group in a slightly 
compressible fluid range, where it behaves like a Navier-Stokes fluid with no anomalies. 

These global topological tests check whether automaton dynamics captures the 
correct overall structure of fluids. In general, whenever the automaton is run in the 
Navier-Stokes range, it produces the expected global topological behavior and correct 
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SIMULATED AND THEORETICAL KINEMATIC VISCOSITIES 

0 l 1 I I I 
0 0.1 0.2 0.3 0.4 0.5 

Density per Cell 

Fig. 8. Theoretical shear (solid line) and bulk (dashed line) reduced viscosities as a function of 
reduced density compared with the results of hexagonal lattice gas simulation with rest particles 
and all possible collisions (dlHurnieres and Lallemand 1987). 

functional forms for various fluid dynamical laws. The question of quantitative accuracy 
of various known constants is harder to answer, and we will take it up in detail later. 

The next broad class of flows studied are flows past objects. Here, we look for 
distinctive qualitative behavior characteristic of a fluid or gas obeying Navier-Stokes 
dynamics. The geometries studied, through a wide range of Reynolds numbers, were 
flows past flat plates placed normal to the flow, flows past plates inclined at various 
angles to the flow, and flows past cylinders, 60-degree wedges, and typical airfoils. The 
expected scenario changes as a function of increasing Reynolds number: recirculating 
flow behind obstacles should develop into vortices, growing couples of vortices should 
eventually break off to form von Karman streets with periodic oscillation of the von 
Karman tails; finally, and as the Reynolds number increases, the periodic oscillations 
should become aperiodic, and the complex phenomena characteristic of turbulent flow 
should appear. The lattice gas exhibits all these phenomena with no non-Navier-Stokes 
anomalies in the range of lattice-gas parameters that characterize near incompressibility. 

The next topic is quantitative self-consistency. We used the Boltzmann transport 
approximation for the discrete model to calculate viscosities for the simple hexagonal 
automaton as well as models with additional scattering rules and rest particles. We then 
checked these analytic predictions against the viscosities deduced from two kinds of 
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simulations. We ran plane-parallel Poiseuille flow in a channel, saw that it developed the 
expected parabolic velocity profile (Fig. 7) and then deduced the viscosity characteristic 
of this type of flow. We also ran an initially flat velocity distribution and deduced a 
viscosity from the observed velocity decay. These two simulations agree with each other 
to within a few percent and agree with the analytic predictions from the Boltzmann 
transport calculation to within 10 percent. Viscosity was also measured by observing the 
decay of sound waves of various frequencies (Fig. 8). The level of agreement between 
simulation and the computed Boltzmann viscosity is generic: we see a systematic error 
of approximately 10 percent. Monte Carlo calculations of viscosities computed from 
microscopic correlation functions improve agreement with simulations to at least 3 
percent and indicate that the Boltzmann description is not as accurate an analytic tool 
for the automaton as are microscopic correlation techniques. One would call this type of 
viscosity disagreement a Boltzmann-induced error. Other consistency checks between 
the automaton simulation and analytic predictions display the same level of agreement. 

Detailed quantitative comparisons between conventional discretizations of the 
Navier-Stokes equations and lattice-gas simulations have yet to be done for several 
reasons. The simple lattice-gas automaton has a Fermi-Dirac distribution rather than 
the standard Maxwell-Boltzmann distribution. This difference alone causes deviations 
of 0(v2) in the macrovelocity from standard results. For the same reason and unlike 
standard numerical spectral codes for fluid dynamics, the simple lattice-gas automa- 
ton has a velocity-dependent equation of state. A meaningful comparison between the 
two approaches requires adjusting the usual spectral codes to compute with a velocity- 
dependent equation of state. This rather considerable task has yet to be done. So far our 
simulations can be compared only to traditional two-dimensional computer simulations 
and analytic results derived from simple equations of state." 

Some simple quantities such as the speed of sound and velocity profiles have been 
measured in the automaton model. The speed of sound agrees with predicted values and 
functional forms for channel velocity profiles and D7Arcy's law agree with calculations 
by standard methods. The automaton reaches local equilibrium in a few time steps and 
reaches global equilibrium at the maximum information-transmission speed, namely, at 
the speed of sound. 

Simulations with the two-dimensional lattice-gas model hang together rather well 
as a simulator of Navier-Stokes dynamics. The method is accurate enough to test 
theoretical turbulent mechanisms at high Reynolds number and as a simulation tool for 
complex geometries, provided that velocity-dependent effects due to the Fermi nature 
of the automaton are correctly included. Automaton models can be designed to fit 
specific phenomena, and work along these lines is in progress. 

Three-dimensional hydrodynamics is being simulated, both on serial and parallel 
machines, and early results show that we can easily simulate flows with Reynolds 
numbers of a few thousand. How accurately this model reproduces known instabilities 
and flows remains to be seen, but there is every reason to believe agreement will be 
good since the ingredients to evolve to Navier-Stokes dynamics are all present. We end 
Part I1 of this article with a graphical display of two- and three-dimensional simulations 
in "Calculations Using Lattice-Gas Techniques." My Los Alamos collaborators and I 
have accompanied this display with a summary of the known advantages and present 
limitations of lattice gas methods. (Part 111 begins on page 211.) 
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0 
ver the last few years the tantaliz- 
ing prospect of being able to per- 
form hydrodynamic calculations 

orders-of-magnitude faster than present 
methods allow has prompted considerable 
interest in lattice gas techniques. A few 
dozen published papers have presented 
both advantages and disadvantages, and 
several groups have studied the possibil- 
ities of building computers specially de- 
signed for lattice gas calculations. Yet the 
hydrodynamics community remains gen- 
erally skeptical toward this new approach. 
The question is often asked, "What cal- 
culations can be done with lattice gas 
techniques?" Enthusiasts respond that in 
principle the techniques are applicable to 
any calculation, adding cautiously that in- 
creased accuracy requires increased com- 
putational effort. Indeed, by adding more 
particle directions, more particles per site, 
more particle speeds, and more variety 
in the interparticle scattering rules, lattice 
gas methods can be tailored to achieve 
better and better accuracy. So the real 
problem is one of tradeoff: How much 
accuracy is gained by making lattice gas 
methods more complex, and what is the 
computational price of those complica- 
tions? That problem has not yet been well 
studied. This paper and most of the re- 
search to date focus on the simplest lattice 
gas models in the hope that knowledge of 
them will give some insight into the es- 
sential issues. 

We begin by examining a few of the 
features of the simple models. We then 
display results of some calculations. Fi- 
nally, we conclude with a discussion of 
limitations of the simple models. 

Features of Simple 
Lattice Gas Methods 

We will discuss in some depth the 
memory efficiency and the parallelism of 
lattice gas methods, but first we will touch 
on their simplicity, stability, and ability to 

model complicated boundaries. 
Computer codes for lattice gas meth- 

ods are enormously simpler than those 
for other methods. Usually the essential 
parts of the code are contained in only a 
few dozen lines of FORTRAN. And those 
few lines of code are much less com- 
plicated than the several hundred lines 
of code normally required for two- and 
three-dimensional hydrodynamic calcula- 
tions. 

There are many hydrodynamic prob- 
lems that cause most standard codes (such 
as finite-difference codes, spectral codes, 
and particle-in-cell codes) to crash. That 
is, the code simply stops running because 
the algorithm becomes unstable. Stability 
is not a problem with the codes for lattice 
gas methods. In addition, such methods 
conserve energy and momentum exactly, 
with no roundoff errors. 

Boundary conditions are quite easy to 
implement for lattice gas methods, and 
they do not require much computer time. 
One simply chooses the cells to which 
boundary conditions apply and updates 
those cells in a slightly different way. 
One of three boundary conditions is com- 
monly chosen: bounce-back, in which 
the directions of the reflected particles 
are simply reversed; specular, in which 
mirror-like reflection is simulated; or dif- 
fusive, in which the directions of the re- 
flected particles are chosen randomly. 

We consider next the memory effi- 
ciency of the lattice gas method. When 
the two-dimensional hydrodynamic lat- 
tice gas algorithm is programmed on a 
computer with a word length of, say, 
64 bits (such as the Cray X-MP), two 
impressive efficiencies occur. The first 
arises because every single bit of mem- 
ory is used equally effectively. Coined 
"bit democracy" by von Neumann, such 
efficient use of memory should be con- 
trasted with that attainable in standard 
calculations, where each number requires 
a whole 64-bit word. The lattice gas 
is "bit democratic" because all that one 

needs to know is whether or not a particle 
with a given velocity direction exists in a 
given cell. Since the number of possible 
velocity directions is six and no two par- 
ticles in the same cell can have the same 
direction, only six bits of information are 
needed to completely specify the state of 
a cell. Each of those six bits corresponds 
to one of the six directions and is set to 
1 if the cell contains a particle with that 
direction and to 0 otherwise. Suppose we 
designate the six directions by A,B,C,D, 
E,F as shown on the next page. We as- 
sociate each bit in the 64-bit word A with 
a different cell, say the first 64 cells in the 
first row. If the first cell contains (does 
not contain) a particle with direction A, 
we set the first bit in A to 1 (0). Similarly, 
we pack information about particles in the 
remaining 63 cells with direction A into 
the remaining 63 bits of A. The same 
scheme is used for the other five direc- 
tions. Consequently, all the information 
for the first 64 cells in the first row is 
contained in the six words A, B ,  C ,  D ,  
E ,  and F. Note that all bits are equally 
important and all are fully utilized. 

To appreciate the significance of such 
efficient use of memory, consider how 
many cells can be specified in the solid- 
state storage device presently used with 
the Cray X-MPJ416 at Los Alamos. That 
device stores 5 12,000,000 64-bit words. 
Since the necessary information for 10: 
cells can be stored in each word, the 
device can store information for about 
5,000,000,000 cells, which corresponds 
to a two-dimensional lattice with 100,000 
cells along one axis and 50,000 cells 
along the other. That number of cells is 
a few orders of magnitude greater than 
the number normally treated when other 
methods are used. (Although such high 
resolution may appear to be a significant 
advantage of the lattice gas method, some 
averaging over cells is required to ob- 
tain smooth results for physical quantities 
such as velocity and density.) 

The second efficiency is related to the 
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Ltaritattom of Simple 
Lattice Gas Model 

As we discussed earlier, lattice gas 
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Flow Past a Plate 
Fig. l a .  Flow past a plate with periodic boundary 

conditions. This simulation, which was done in 

September 1985, shows vortices forming behind the 

plate. The average flow velocity has a magnitude of 

0.2 lattice sites per time step and is perpendicular to 

the plate, pointing to the lower right. The direction 

of the flow velocity is color-coded. 

Fig. 1b. The same simulation as that described in  

Fig. l a  but with no three-body scattering rule. As a 

result, spurious laws of conservation of momentum 

along the lines of the grid prevent the development 

of hydrodynamics. 



Kelvin-Helmholtz Instability - d 
Fig. 2. A Kelvin-Helmholtz instability develops into vortices from initially opposing flows past 

a sinusoidal interface that is removed at 1 = 0. Periodic boundary conditions apply. For 
this simulation about 10,000,000 particles and 14,000,000 cells were used. 
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Flow Past 
a Wedge 



Fig. 3. A wake grows behind a wedge. The flow is 

from left to right with periodic boundary conditions. 

tides and 16 million cells were used. 

1 
The flow is initialized as uniform flow to the right. The 

wedge is inserted at t = 0. Then vortices grow and are 

carried downstream. For this simulation 20 million par- 

Flow Past 
a Cylinder 
Fig. 4. Low-velocity flow (from top to bot- 

tom) past a cylinder creates a periodically 

oscillating wake. Four snapshots from one 

period of the oscillation are shown. In this 

simulation, which has periodic right and 

left boundaries, 1.4 million particles flowed 

through 1 million cells. The flow was ini- 

tially uniform. 

Turbulent 
Wake 
Fig. 5. A turbulent wake grows behind an 

ellipse being dragged through a fluid con- 

sisting of 11 million particles and 8 million 

cells. The ellipse is composed of about 

2400 cells in which the velocity directions 

of the entering particles are reversed. The 

flow has periodic right and left boundaries. 

(An infinite sequence of equivalent ellipses 

exists to the left and right of the frame 

shown.) The Reynolds number in the flow 

is 1021. 
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1 tice Gas Techniques" we displayed 
the results of generalizing the sim- 

ple hexagonal model to three dimensions. 
Here, in the last part of the article, we 
will discuss numerous ways to extend and 
adapt the simple model. In particular, we 
emphasize its role as a paradigm for par- 
allel computing. 

Adjusting the Model To Fit 
the Phenomenon 

There are several reasons for altering 
the geometry and rule set of the funda- 
mental hexagonal model. To understand 
the mathematical physics of lattice gases, 
we need to know the class of functionally 
equivalent models, namely those models 
with different geometries and rules that 
produce the same dynamics in the same 
parameter range. 

To explore turbulent mechanisms in 
fluids, the Reynolds number must be sig- 
nificantly higher than for smooth flow, 
so models must be developed that in- 
crease the Reynolds number in some way. 
The most straightforward method, other 
than increasing the size of the simula- 
tion universe, is to lower the effective 
mean free path in the gas. This lowers 
the viscosity and the Reynolds number 
rises in inverse proportion. Increasing 
the Reynolds number is also important 
for practical applications. In "Reynolds 
Number and Lattice Gas Calculations" 

work needed to simulate high-Reynolds- 
number flows with cellular automata. 

To apply lattice gas methods to sys- 
tems such as plasmas, we need to develop 
models that can support widely separated 
time scales appropriate to, for example, 
both photon and hydrodynamical modes. 
The original hexagonal model on a single 
lattice cannot do so in any natural way 
but must be modified to include several 
lattices or the equivalent (see below). 

Within the class of fluids, problems in- 
volving gravity on the gas, multi-compo- 
nent fluids, gases of varying density, and 
gases that undergo generalized chemical 
reactions require variations of the hexago- 
nal model. Once into the subject of appli- 
cations rather than fundamental statistical 
mechanics, there is an endless industry 
in devising clever gases that can simulate 
the dynamics of a problem effectively. 

We outline some of the possible ex- 
tensions to the hexagonal gas, but do so 
only to give an overview of this develop- 
ing field. Nothing fundamental changes 
by making the gas more complex. This 
model is very much like a language. We 
can build compound sentences and para- 
graphs out of simple sentences, but it 
does not change the fundamental rules by 
which the language works. 

The obvious alterations to the hexago- 
nal model are listed below. They com- 
prise almost a complete list of what can 
be done in two dimensions, since a lattice 
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gas model contains only a few adjustable 
structural elements. 

Indistinguishable particles can be col- 
ored to create distinguishable species in 
the gas, and the collision rules can be 
appropriately modified. Rules can be 
weighted to different outcomes; for ex- 
ample, one can create a chiral gas (left- 
or right-handed) by biasing collisions 
to make them asymmetric. In three di- 
mensions there is an instability at any 
Reynolds number caused by lack of mi- 
croscopic parity, so the chiral gas is an 
important model for simulating this in- 
stability. 

At the next order of complexity, multi- 
speed particles can be introduced, either 
alone or with changes in geometry. The 
simplest example is a square neighbor- 
hood in two dimensions in which the col- 
lision domain is enlarged to include next- 
to-nearest neighbors, and a diagonal parti- 
cle with speed -\/2 is introduced to force 
an isotropic lattice gas. In general, any 
lattice model with only two-body colli- 
sions and a single speed will contain spu- 
rious conservation laws. But if multiple 
speeds are allowed, models with binary 
collisions can maintain isotropy. In other 
words, models with multiple speeds are 
equivalent to single-speed models with a 
higher order rotation group and extended 
collision sets. Many variations are possi- 
ble and each can be designed to a problem 
where it has a special advantage. 

Finally, colored multiple-speed mod- 
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els are in general equivalent to single- 
species models operating on separate lat- 
tices. Colored collision rules couple the 
lattices so that information can be trans- 
ferred between them at different time 
scales. Certain statistical-mechanical phe- 
nomena such as phase transitions can be 
done this way. 

By altering the rule domain and adding 
gas species with distinct speeds, it is pos- 
sible to add independent energy conserva- 
tion. This allows one to tune gas models 
to different equations of state. Again, we 
gain no fundamental insight into the de- 
velopment of large collective models by 
doing so, but it is useful for applications. 

In using these lattice gas variations to 
construct models of complex phenomena, 
we can proceed in two directions. The 
first direction is to study whether or not 
complex systems with several types of 
coupled dynamics are described by skele- 
tal gases. Can complex chemical reac- 
tions in fluids and gases, for example, 
be simulated by adding collision rules 
operating on colored multi-speed lattice 
gases? Complex chemistry is set up in the 
gas in outline form, as a gross scheme of 
closed sets of interaction rules. The same 
idea might be used for plasmas. From a 
theoretical viewpoint one wants to study 
how much of the known dynamics of such 
systems is reproduced by a skeletal gas; 
consequently both qualitative and quanti- 
tative results are important. 

Exploring Fundamental Questions. 
Models of complex gas or fluid systems, 
like other lattice gas descriptions, may ei- 
ther be a minimalist description of mi- 
crophysics or simply have no relation to 
microphysics other than a mechanism for 
carrying known conservation laws and re- 
actions. We can always consider such gas 
models to be pure computers, where we 
fit the wiring, or architecture, to the prob- 
lem, in the same fashion that ordinary dis- 
cretization schemes have no relation to 
the microphysics of the problem. How- 
ever for lattice gas models, or cellular- 

continued on page 214 

NUMBER 
and 

Lattice Gas 
Calculations 

T he only model-dependent coupling 
constant in the Navier-Stokes equa- 
tion is the viscosity. Its main role 

in lattice gas computations is its influence 
on the Reynolds number, an important 
scaling concept for flows. Given a system 
with a fixed intrinsic global length scale, 
such as the size of a pipe or box, and 
given a flow, then the Reynolds number 
can be thought of as the ratio of a typical 
macrodynamic time scale to a time scale 
set by elementary molecular processes in 
the kinetic model. 

Reynolds numbers characterize the be- 
havior of flows in general, irrespective 
of whether the system is a fluid or a 
gas. At high enough Reynolds num- 
bers turbulence begins, and turbulence 
quickly loses all memory of molecular 
structure, becoming universal across liq- 

uids and gases. For this reason and 
because many interesting physical and 
mathematical phenomena happen in tur- 
bulent regimes, it is important to be able 
to reach these Reynolds numbers in real- 
istic simulations without incurring a large 
amount of computational work or storage. 

Some simple arguments based on di- 
mensional analysis and phenomenolog- 
ical theories of turbulence indicate, at 
first glance, that any cellular automaton 
model has a high cost in computer re- 
sources when simulating high-Reynolds- 
number flows. These arguments appeared 
in the first paper on the subject (Frisch, 
Hasslacher, and Pomeau 1987) and were 
later elaborated on by other authors. We 
will go through the derivation of some 
of the more severe constraints on simu- 
lating high-Reynolds-number flows with 

Los Alamos Science Special Issue 1987 



Discrete Fluids 

i s  much more complex 
than in normal fluid models. An aeeu- 
rate fom is K = Lv^(&)/w(fiQ), where 

set to 1. To re- 
sftte, the velocities 

in the modd should remain small cam- 

t ta include. For the 
three-duneosional projection of the four- 

ioflal madel, it is known that 8 is 
about 9. 

By repeating essentially Ae same di- 

&as. 
For a typical simulation in 

Los Alamos Science Special Issue 1987 



Discrete Fluids 

continued from page 212 

automaton models in general, there al- 
ways seems to be a deep relation between 
the abstract computer embodying the gas 
algorithm for a physical problem and the 
mathematical physics of the system itself. 

This duality property is an important 
one, and it is not well understood. One 
of the main aims of lattice gas theory is 
to make the underlying mathematics of 
dynamical evolution clearer by providing 
a new perspective on it. One would, for 
example, like to know the class of all lat- 
tice gas systems that evolve to a dynam- 
ics that is, in an appropriate sense, nearby 
the dynamics actually evolved by nature. 
Doing this will allow us to isolate what 
is common to such systems and identify 
universal mathematical mechanisms. 

Engineering Design Applications. The 
second direction of study is highly ap- 
plied. In most engineering-design sit- 
uations with complicated systems, one 
would like to know first the general qual- 
itative dynamical behavior taking place 
in some rather involved geometry and 
then some rough numerics. Given both, 
one can plot out the zoo of dynamical 
development within a design problem. 
Usually, one does not know what kinds 
of phenomena can occur as a parameter 
in the system varies. Analytic methods 
are either unavailable, hard to compute 
by traditional methods, or simply break 
down. Estimating phenomena by scal- 
ing or arguments depending on order-of- 
magnitude dimensional analysis is often 
inaccurate or yields insufficient informa- 
tion. As a result, a large amount of ex- 
pensive and scarce supercomputer time is 
used just to scan the parameter space of 
a system. 

Lattice gas models can perform such 
tasks efficiently, since they simulate at 
the same speed whether the geometry and 
system are simple or complex. Compli- 
cated geometries and boundary conditions 
for massively parallel lattice gas simula- 
tors involve only altering collision rules 
in a region. This is easily coded and 

can be done interactively with a little in- 
vestment in expert systems. There is no 
question that for complex design prob- 
lems, lattice gas methods can be made 
into powerful design tools. 

Beyond Two Dimensions 

In two dimensions there exists a single- 
speed skeletal model for fluid dynamics 
with a regular lattice geometry. It re- 
lies on the existence of a complete tiling 
of the plane by a domain of sufficiently 
high symmetry to guarantee the isotropy 
of macroscopic modes in the model. In 
three dimensions this is not the case, for 
the minimum appropriate domain symme- 
try is icosahedral and such polyhedra do 
not tile three-space. If we are willing 
to introduce multiple-speed models, there 
may exist a model with high enough ro- 
tational symmetry, as in the square model 
with nearest and next-to-nearest neighbor 
interaction in two dimensions, but it is not 
easy to find and may not be efficient for 
simulations. 

A tactic for developing an enlarged- 
neighborhood, three-dimensional model, 
which still admits a regular lattice, is to 
notice that the number of regular polyhe- 
dra as a function of dimension has a max- 
imum in four dimensions. Examination 
of the face-centered four-dimensional hy- 
percube shows that a single-speed model 
connected to each of twenty-four near- 
est neighbors has exactly the right in- 
variance group to guarantee isotropy in 
four dimensions. So four-dimensional 
single-speed models exist on a regular 
tiling. Three-dimensional, or regular, hy- 
drodynamics can be recovered by taking a 
thin one-site slice of the four-dimensional 
case, where the edges of the slice are 
identified. Projecting such a scheme into 
three-dimensional space generates a two- 
speed model with nearest and next-to- 
nearest neighbor interactions of the sort 
guaranteed to produce three-dimensional 
Navier-Stokes dynamics. 

Such models are straightforward ex- 

tensions of all the ideas present in the 
two-dimensional case and are being sim- 
ulated presently on large Cray-class ma- 
chines and the Connection Machine 2. 
Preliminary results show good agreement 
with standard computations at least for 
low Reynolds numbers. In particular, 
simulation of Taylor-Green vortices at 
a Reynolds number of about 100 on a 
(128) universe (a three-dimensional cube 
with 128 cells in each direction) agrees 
with spectral methods to within 1 per- 
cent, the error being limited by Monte 
Carlo noise. The ultimate comparison is 
against laboratory fluid-flow experiments. 
As displayed at the end of Part 11, three- 
dimensional flows around flat plates have 
also been done. 

A more intriguing strategy is to give 
up the idea of a regular lattice. Phys- 
ical systems are much more like a lat- 
tice with nodes laid down at random. At 
present, we don't know how to analyze 
such lattices, but an approximation can be 
given that is intermediate between regu- 
lar and random grids. Quasi-tilings are 
sets of objects that completely tile space 
but the grids they generate are not peri- 
odic. Locally, various types of rotation 
symmetry can be designed into such lat- 
tices, and in three dimensions there ex- 
ists such a quasi-tiling that has icosahe- 
dral symmetry everywhere. The beauty 
of quasi-tilings is that they can all be 
obtained by simple slices through hyper- 
cubes in the appropriate dimension. For 
three dimensions the parent hypercube is 
six-dimensional. 

The idea is to run an automaton model 
containing the conservation laws with as 
simple a rule set as possible on the six- 
dimensional cube and then take an appro- 
priately oriented three-dimensional slice 
out of the cube so arranged as to gen- 
erate the icosahedral quasi-tiling. Since 
we only examine averaged quantities, it is 
enough to do all the averaging in six di- 
mensions along the quasi-slice and image 
the results. By such a method we guar- 
antee exact isotropy everywhere in three 
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dimensions and avoid computing directly 
on the extremely complex lattices that the 
quasi-tiling generates. Ultimately, one 
would like to compute on truly random 
lattices, but for now there is no simple 
way of doing that efficiently. 

The simple four-dimensional model is 
a good example of the limits of present 
super-computer power. It is just barely 
tolerable to run a (1000)~ universe at a 
Reynolds number of order a few thousand 
on the largest existing Cray's. It is far 
more efficient to compute in large paral- 
lel arrays with rather inexpensive custom 
machines, either embedded in an existing 
parallel architecture or on one designed 
especially for this class of problems. 

Lattice Gases as Parallel 
Computers 

Let us review the essential features of a 
lattice gas. The first property is the totally 
discrete nature of the description: The 
gas is updated in discrete time steps, lat- 
tice gas elements can only lie on discrete 
space points arranged in a space-filling 
network or grid, velocities can also have 
only discrete values and these are usually 
aligned with the grid directions, and the 
state of each lattice gas site is described 
by a small number of discrete bits instead 
of continuous values. 

The second crucial property is the local 
deterministic rules for updating the array 
in space and time. The value of a site 
depends only on the values of a few lo- 
cal neighbors so there is no need for in- 
formation to propagate across the lattice 
universe in a single step. Therefore, there 
is no requirement for a hardwired inter- 
connection of distant sites on the grid. 

The third element is the Boolean nature 
of the updating rules. The evolution of 
a lattice gas can be done by a series of 
purely Boolean operations, without ever 
computing with radix arithmetic. 

To a computer architect, we have just 
described the properties of an ideal con- 
current, or parallel, computer. The iden- 

tical nature of particles and the locality 
of the rules for updating make it natural 
to update all sites in one operation-this 
is what one means by concurrent or par- 
allel computation. Digital circuitry can 
perform Boolean operations naturally and 
quickly. Advancing the array in time is a 
sequence of purely local Boolean opera- 
tions on a deterministic algorithm. 

Most current parallel computer designs 
were built with non-local operations in 
mind. For this reason the basic architec- 
ture of present parallel machines is over- 
laid with a switching network that en- 
ables all sites to communicate in various 
degrees with all other sites. (The usual 
model of a switching network is a tele- 
phone exchange.) The complexity of ma- 
chine architecture grows rapidly with the 
number of sites, usually as n log n at best 
with some time tradeoff and as 0 ( n 2 )  at 
worst. In a large machine, the complex- 
ity of the switching network quickly be- 
comes greater than the complexity of the 
computing configuration. 

In a purely local architecture switch- 
ing networks are unnecessary, so two- 
dimensional systems can be built in a 
two-dimensional, or planar configuration, 
which is the configuration of existing 
large-scale integrated circuits. Such an 
architecture can be made physically com- 
pact by arranging the circuit boards in an 
accordion configuration similar to a piece 
of folded paper. Since the type of geome- 
try chosen is vital to the collective behav- 
ior of the lattice gas model and no unique 
geometry fits all of parameter space, it 
would be a design mistake to hardwire a 
particular model into a machine architec- 
ture. Machines with programmable ge- 
ometries could be designed in which the 
switching overhead to change geometries 
and rules would be minimal and the gain 
in flexibility large (Fig. 9). 

In more than two dimensions a purely 
two-dimensional geometry is still effi- 
cient, using a combination of massive 
parallel updating in a two-dimensional 
plane and pipelining for the extra dimen- 

sions. As technology improves, it is easy 
to imagine fully three-dimensional ma- 
chines, perhaps with optical pathways be- 
tween planes, that have a long mean time 
to failure. 

The basic hardware unit in conven- 
tional computers is the memory chip, 
since it has a large storage capacity (256 
K bytes or 1 M bytes presently) and is 
inexpensive, reliable, and available com- 
mercially in large quantities. In fact, 
most modem computers have a memory- 
bound architecture, with a small number 
of controlling processors either doing lo- 
cal arithmetic and logical operations or 
using fast hashing algorithms on large 
look-up tables. An alternative is the lo- 
cal architecture described above for lat- 
tice gas simulators. In computer archi- 
tecture terms it becomes very attractive 
to build compact, cheap, very fast simu- 
lators which are general over a large class 
of problems such as fluids. Such ma- 
chines have a potential processing capac- 
ity much larger than the general-purpose 
architectures of present or foreseen vec- 
torial and pipelined supercomputers. A 
number of such machines are in the pro- 
cess of being designed and built, and it 
will be quite interesting to see how these 
experiments in non-von Neumann archi- 
tectures (more appropriately called super- 
von Neumann) turn out. 

At present, the most interesting ma- 
chine existing for lattice gas work is the 
Connection Machine with around 65,000 
elementary processors and several giga- 
bytes of main memory. This machine 
has a far more complex architecture than 
needed for pure lattice-gas work, but it 
was designed for quite a different pur- 
pose. Despite this, some excellent simu- 
lations have been done on it. The simu- 
lations at Los Alamos were done mainly 
on Crays with SUN workstations serv- 
ing as code generators, controllers, and 
graphical units. The next generation of 
machines will see specialized lattice gas 
machines whether parallel, pipelined, or 
some combination, running either against 
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ARCHITECTURE OF THE 
LATTICE GAS SIMULATOR 

Fig. 9. The lattice gas code is a virtual machine 
in the sense that the way the code works is 
exactly the way to build a machine. 

(a) The basic processor unit in a lattice gas 
simular has five units: (1) a memory unit that 
stores the state at each node of the lattice grid; 
(2) a propagation unit that advances particles 
from one node to the next; (3) a scattering unit 
that checks the state at each node and imple- 
ments the scattering rules where appropriate; 
(4) an averaging unit that averages velocities 
over a preassigned region of the lattice uni- 
verse; and (5) an output and display unit. 

(b) Processors are arranged in a parallel ar- 
ray. Each processor operates independently 
except at nodes on shared boundaries of the 
lattice gas universe. 

(c) Processor units are overlaid by units that 
can alter the geometry of the lattice, the col- 
lision rules and boundary conditions, and the 
type of averaging. 

Connection Machine style architectures 
or using them as analyzing engines for 
processing data generated in lattice gas 
"black boxes." This will be a leam- 
ing experience for everyone involved in 
massive simulation and provide hardware 
engines that will have many interesting 
physics and engineering applications. 

Unfortunately, fast hardware alone is 
not enough to provide a truly useful ex- 
ploration and design tool. A large amount 
of data is produced in a typical many de- 
gree of freedom system simulation. In 
three dimensions the problems of access- 
ing, processing, storing, and visualizing 
such quantities of data are unsolved and 
are really universal problems even for 
standard supercomputer technology. As 
the systems we study become more com- 

Scattering Unit + 
(a) Processor Unit 

(b) Parallel Array of Processors 

m 
Lattice Geometry (~oundar~  conditions) 

and Scattering Rules 
Selector 

(c) Control Unit Modifying Processors 

plex, all these problems will also. It will 
take innovative engineering and physics 
approaches to overcome them. 

Conclusion 

To any system naturally thought of 
as classes of simple elements interacting 
through local rules there should corre- 
spond a lattice-gas universe that can sim- 
ulate it. From such skeletal gas models, 
one can gain a new perspective on the 
underlying mathematical physics of phe- 
nomena. So far we have used only the 
example of fluids and related systems that 
naturally support flows. The analysis of 
these systems used the principle of max- 
imum ignorance: Even though we know 
the system is deterministic, we disregard 

that information and introduce artificial 
probabilistic methods. The reason is that 
the analytic tools for treating problems 
in this way are well developed, and al- 
though tedious to apply, they require no 
new mathematical or physical insight. 

A deep problem in mathematical phys- 
ics now comes up. The traditional meth- 
ods of analyzing large probabilistic sys- 
tems are asymptotic perturbation expan- 
sions in various disguises. These contain 
no information on how fast large-scale 
collective behavior should occur. We 
know from computer simulations that lo- 
cal equilibrium in lattice gases takes only 
a few time steps, global equilibrium oc- 
curs as fast as sound propagation will al- 
low, and fully developed hydrodynamic 
phenomena, including complex instabil- 
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ities, happen again as fast as a traverse 
of the geometry by a sound wave. One 
might say that the gas is precociously 
asymptotic and that this is basically due 
to the deterministic property that conveys 
information at the greatest possible speed. 

Methods of analyzing the transient and 
invariant states of such complex multi- 
dimensional cellular spaces, using de- 
terminism as a central ingredient, are 
just beginning to be explored. They are 
non-perturbative. The problem seems as 
though some of the methods of dynam- 
ical systems theory should apply to it, 
and there is always the tempting shadow 
of renormalization-group ideas waiting to 
be applied with the right formalism. So 
far we have been just nibbling around the 
edges of the problem. It is an extraordi- 
narily difficult one, but breaking it would 
provide new insight into the origin of ir- 
reversible processes in nature. 

The second feature of lattice gas mod- 
els, for phenomena reducible to natural 
skeletal worlds, is their efficiency com- 
pared to standard computational meth- 
ods. Both styles of computing reduce 
to inventing effective microworlds, but 
the conventional one is dictated and con- 
strained by a limited vocabulary of differ- 
ence techniques, whereas the lattice gas 
method designs a virtual machine inside 
a real one, whose architectural structure is 
directly related to physics. It is not a pri- 
ori clear that elegance equals efficiency. 
In many cases, lattice gas methods will 
be better at some kinds of problems, es- 
pecially ones involving highly complex 
systems, and in others not. Its usefulness 
will depend on cleverness and the prob- 
lem at hand. At worst the two ways of 
looking at the microphysics are comple- 
mentary and can be used in various mix- 
tures to create a beautiful and powerful 
computational tool. 

We close this article with a series of 
conjectures. The image of the physical 
world as a skeletal lattice gas is essen- 
tially an abstract mathematical framework 
for creating algorithms whose dynamics 

spans the same solution spaces as many 
physically important nonlinear partial dif- 
ferential equations that have a micrody- 
namical underpinning. There is no intrin- 
sic reason why this point of view should 
not extend to those rich nonlinear sys- 
tems which have no natural many-body 
picture. The classical Einstein-Hilbert ac- 
tion, phrased in the appropriate space, is 
no more complex than the Navier-Stokes 
equations. It should be possible to in- 
vent appropriate skeletal virtual comput- 
ers for various gauge field theories, be- 
ginning with the Maxwell equations and 
proceeding to non-Abelian gauge mod- 
els. Quantum mechanics can perhaps 
be implemented by using a variation on 
the stochastic quantization formulation of 
Nelson in an appropriate gas. When such 
models are invented, the physical mean- 
ing of the skeletal worlds is open to in- 
terpretation. It may be they are only a 
powerful mathematical device, a kind of 
virtual Turing machine for solving such 
problems. But it may also be that they 
will provide a new point of view on the 
physical origin and behavior of quan- 
tum mechanics and fundamental field- 
theoretic descriptions of the world. 
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by David K.  Campbell No tribute to the legacy of Stan Ularn would be complete without a discussion of 
"nonlinear science," a growing collection of interdisciplinary studies that in the past 
two decades has excited and challenged researchers from nearly every discipline of 
the natural sciences, engineering, and mathematics. Through his own research Stan 
played a major role in founding what we now call nonlinear science, and through his 
encouragement of the work of others, he guided its development. In this survey article 
I will try to weave the thread of Stan's contributions into the pattern of recent successes 
and current challenges of nonlinear science. At the same time I hope to capture some 
of the excitement of research in this area. 

Introduction 

Let me start from a very simple, albeit circular, definition: nonlinear science is the 
study of those mathematical systems and natural phenomena that are not linear. Ever 
attuned to the possibility of bons mots, Stan once remarked that this was "like defining 
the bulk of zoology by calling it the study of 'non-elephant animals'." His point, 
clearly, was that the vast majority of mathematical equations and natural phenomena 
are nonlinear, with linearity being the exceptional, but important, case. 

Linear versus Nonlinear. Mathematically, the essential difference between linear 
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and nonlinear equations is clear. Any two solutions of a linear equation can be added 
together to form a new solution; this is the superposition principle. In fact, a moment 
of serious thought allows one to recognize that superposition is responsible for the 
systematic methods used to solve, independent of other complexities, essentially any 
linear problem. Fourier and Laplace transform methods, for example, depend on being 
able to superpose solutions. Putting it naively, one breaks the problem into many small 
pieces, then adds the separate solutions to get the solution to the whole problem. 

In contrast, two solutions of a nonlinear equation cannot be added together to form 
another solution. Superposition fails. Thus, one must consider a nonlinear problem in 
toto; one cannot-at least not obviously-break the problem into small subproblems 
and add their solutions. It is therefore perhaps not surprising that no general analytic 
approach exists for solving typical nonlinear equations. In fact, as we shall discuss, 
certain nonlinear equations describing chaotic physical motions have no useful analytic 
solutions. 

Physically, the distinction between linear and nonlinear behavior is best abstracted 
from examples. For instance, when water flows through a pipe at low velocity, its 
motion is laminar and is characteristic of linear behavior: regular, predictable, and 
describable in simple analytic mathematical terms. However, when the velocity exceeds 
a critical value, the motion becomes turbulent, with localized eddies moving in a 
complicated, irregular, and erratic way that typifies nonlinear behavior. By reflecting 
on this and other examples, we can isolate at least three characteristics that distinguish 
linear and nonlinear physical phenomena. 

First, the motion itself is qualitatively different. Linear systems typically show 
smooth, regular motion in space and time that can be described in terms of well- 
behaved functions. Nonlinear systems, however, often show transitions from smooth 
motion to chaotic, erratic, or, as we will see later, even apparently random behavior. 
The quantitative description of chaos is one of the triumphs of nonlinear science. 

Second, the response of a linear system to small changes in its parameters or 
to external stimulation is usually smooth and in direct proportion to the stimulation. 
But for nonlinear systems, a small change in the parameters can produce an enormous 
qualitative difference in the motion. Further, the response to an external stimulation 
can be different from the stimulation itself: for example, a periodically driven nonlinear 
system may exhibit oscillations at, say, one-half, one-quarter, or twice the period of the 
stimulation. 

Third, a localized "lump," or pulse, in a linear system will normally decay by 
spreading out as time progresses. This phenomenon, known as dispersion, causes waves 
in linear systems to lose their identity and die out, such as when low-amplitude water 
waves disappear as they move away from the original disturbance. In contrast, nonlinear 
systems can have highly coherent, stable localized structures-such as the eddies in 
turbulent flow-that persist either for long times or, in some idealized mathematical 
models, for all time. The remarkable order reflected by these persistent coherent 
structures stands in sharp contrast to the irregular, erratic motion that they themselves 
can undergo. 

To go beyond these qualitative distinctions, let me start with a very simple physical 
system-the plane pendulum-that is a classic example in at least two senses. First, it 
is a problem that all beginning students solve; second, it is a classic illustration of how 
we mislead our students about the prevalence and importance of nonlinearity. 

Applying Newton's law of motion to the plane pendulum shown in Fig. 1 yields 
an ordinary second-order differential equation describing the time evolution: 

THE SIMPLE PENDULUM 

Fig. 1. It can be seen that a nonlinear equa- 
tion describes the motion of the simple, plane 
pendulum when, in accordance with Newton's 
force law, the component of the gravitational 
force in the angular direction, -mg sin 0(t), is 
set equal to the rate of change of the momen- 
tum, ml d20(t)/dt2, in that direction. 

\ 
-mg sin 8(t)  

where 8 is the angular displacement of the pendulum from the vertical, 1 is the length 
of the arm, and g is the acceleration due to gravity. Equation 1 is obviously nonlinear 
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because sin(& + 62) + sin 6, + sin 02. 
What happens, however, if we go to the regime of small displacements? The 

Taylor expansion of sin0 (w 0 - $ + Â .) tells us that for small 6 the equation is 
approximately linear: 

d2Q(t) + %(t) w 0. 
dt2 I 

The general solution to the linear equation is the superposition of two terms, 

Q(t) = - - sin wt + Qo cos wt, (::) 
where Qo and (d0/dt)o are the angle and angular velocity at the initial time and the 
frequency w is a constant given by w = \/gJl. 

Equation 3 is the mathematical embodiment of Galilee's famous observation that 
the frequency of a pendulum is independent of its amplitude. But in fact the result 
is a consequence of the linear approximation, valid only for small oscillations. If 
the pendulum undergoes very large displacements from the vertical, its motion enters 
the nonlinear regime, and one finds that the frequency depends on amplitude, larger 
excursions having longer periods (see "The Simple But Nonlinear Pendulum"). Of 
course, grandfather clocks would keep terrible time if the linear equation were not a 
good approximation; nonetheless, it remains an approximation, valid only for small- 
amplitude motion. 

The distinction between the full nonlinear model of the pendulum and its linear 
approximation becomes substantially more striking when one studies the pendulum's 
response to an external stimulus. With both effects of friction and a periodic driving 
force added, the pendulum equation (Eq. 1) becomes 

where a is a measure of the frictional force and I? and f2 are the amplitude and 
frequency, respectively, of the driving force. In the regime of small displacements, this 
reduces to the linear equation 

A closed-form solution to the linear equation can still be obtained, and the motion can 
be described analytically for all time. For certain values of a, I?, and f2, the solution 
to even the nonlinear equation is periodic and quite similar to that of the linear model. 
For other values, however, the solution behaves in a complex, seemingly random, 
unpredictable manner. In this chaotic regime, as we shall later see, the motion of this 
very simple nonlinear system defies analytic description and can indeed be as random 
as a coin toss. 

Dynamical Systems: From Simple to Complex. Both the free pendulum and its 
damped, driven counterpart are particular examples of dynamical systems. The free 
pendulum is a conservative dynamical system-energy is constant in time-whereas 
the damped, driven pendulum is a dissipative system-energy is not conserved. Loosely 
speaking, a dynamical system can be thought of as anything that evolves in time 
according to a well-defined rule. More specifically, the variables in a dynamical system, 
such as q and p,  the canonical position and momentum, respectively, have a rate of 
change at a given time that is a function of the values of the variables themselves at that 
time: q(t) = f (q(t), (t)) and p(t) = g (q (t), p(t)) (where a dot signifies differentiation 
with respect to time). The abstract "space" defined by these variables is called the phase 
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HARMONIC-OSCILLATOR 
PHASE SPACE 

Fig. 2. The behavior of the simple pendu- 
lum is here represented by constant-energy 
contours in 8-6 (roughly, position-momentum) 
phase space. The closed curves around the 
origin ( E  < 2mgI) represent librations, or pe- 
riodic oscillations, whereas the open, "wavy" 
lines for large magnitudes of 6 (E  > 2mgl) 
correspond to motions in which the pendulum 
moves completely around its pivot in either a 
clockwise (6 < 0) or counterclockwise (6 > 0) 
sense, causing 8 to increase in magnitude be- 
yond 2ir. (Figure courtesy of Roger Eckhardt, 
Los Alamos National Laboratory.) 

space, and its dimension is clearly related to the number of variables in the dynamical 
system. 

In the case of the free pendulum, the angular position and velocity at any instant 
determine the subsequent motion. Hence, as discussed in "The Simple But Nonlinear 
Pendulum," the pendulum's behavior can be described by the motion of a point in 
the two-dimensional phase space with coordinates 6 and 6  (Fig. 2). In the traditional 
parlance of mechanics, the free pendulum is a Hamiltonian system having "one degree 

of freedom," since it has only one spatial variable (0) and one generalized momentum 
(roughly, 6 ) .  Further, as discussed in the sidebar, this system is completely integrable, 
which in effect means that its motion for all time can be solved for analytically in terms 
of the initial values of the variables. 

More typically, dynamical systems involve many degrees of freedom and thus have 
high-dimensional phase spaces. Further, they are in general not completely integrable. 
An example of a many-degree-of-freedom system particularly pertinent to our current 
discussion is the one first studied by Enrico Fermi, John Pasta, and Stan Ulam in the 
mid-fifties: a group of particles coupled together by nonlinear springs and constrained 
to move only in one dimension. Now celebrated as the "FPU problem," the model 
for the system consists of a large set of coupled, ordinary differential equations for the 
time evolution of the particles (see "The Fermi, Pasta, and Ulam Problem: Excerpts 
from 'Studies of Nonlinear Problems'"). Specifically, one particular version of the 
FPU problem has 64 particles obeying the equations 

where a is the measure of the strength of the nonlinear interaction between neighboring 
particles. Thus there are 64 degrees of freedom and, consequently, a 128-dimensional 
phase space. 

Still more complicated, at least a priori, are continuous nonlinear dynamical 
systems, such as fluids. Here one must define dynamical variables-such as the 
density p(x, t)-at every point in space. Hence the number of degrees of freedom, 
and accordingly the phase-space dimension, becomes infinite; further, the resulting 
equations of motion become nonlinear partial differential equations. Note that one can 
view these continuous dynamical systems as the limits of large discrete systems and 
understand their partial differential equations as the limits of many coupled ordinary 
differential equations. 

We can illustrate this approach using a continuous nonlinear dynamical system 
that will be important in our later discussion. Hopefully, this example will pique the 
reader's interest, for it also indicates how elegantly perverse nonlinearity can be. The 
system is represented by the so-called sine-Gordon equation 

$0 8 0  
-- - + sin 6 = 0, 
Qt2 Qx2 (7) 
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where the dependent variable 6 = 6(x, t) is a measure of the response of the system at 
position x and time t .  

Computationally, one natural way to deal with this system is to introduce a discrete 
spatial grid with spacing Â : such that the position at the nth point in the grid is given 
by x,, = n Ax and define &(t) = 6(xn, t) for n = 1,2,  . . . N. Using a finite difference 
approximation for the second derivative, 

leads to a set of N coupled ordinary differential equations 

This is a finite degree-of-freedom dynarnical system, like the FPU problem. In partic- 
ular, it is just a set of simple plane pendula, coupled together by the discretized spatial 
derivative. Of course, the continuous sine-Gordon equation is recovered in the limit 
that N -+ oo (and thus Ax 4 0). The perverseness of nonlinearity is that whereas 
the Hamiltonian dynamical system described by a finite number N of coupled ordinary 
differential equations is not completely integrable, the infinite-dimensional Hamilto- 
nian system described by the continuum sine-Gordon equation is! Further, as we shall 
later demonstrate, the latter system possesses localized "lump" solutions-the famed 
solitons-that persist for all time. 

Hopefully, this digression on dynamical systems has made the subtlety of nonlin- 
ear phenomena quite apparent: very simple nonlinear systems-such as the damped, 
driven pendulum~can exhibit chaos involving extremely complex, apparently random 
motions, while very complicated systems-such as the one described by the sine-Gordon 
equat ion~can exhibit remarkable manifestations of order. The challenge to researchers 
in this field is to determine which to expect and when. 

Paradigms of Nonlinearity. Before examining in some detail how this challenge is 
being confronted, we need to respond to some obvious but important questions. First, 
why study nonlinear science, rather than nonlinear chemistry, or nonlinear physics, or 
nonlinear biology? Nonlinear science sounds impossibly broad, too interdisciplinary, 
or "the study of everything." However, the absence of a systematic mathematical 
framework and the complexity of natural nonlinear phenomena suggest that nonlinear 
behavior is best comprehended by classifying its various manifestations in many differ- 
ent systems and by identifying and studying their common features. Indeed, both the 
interest and the power of nonlinear science arise precisely because common concepts 
are being discovered about systems in very different areas of mathematics and natural 
sciences. These common concepts, or paradigms, give insight into nonlinear problems 
in a large number of disciplines at once. By understanding these paradigms, one can 
hope to understand the essence of nonlinearity as well as its consequences in many 
fields. 

Second, since it has long been known that most systems are inherently nonlinear, 
why has there been a sudden blossoming of interest in this field in the past twenty years 
or so? Why weren't many of these fundamental problems solved a century ago? On 
reflection, one can identify three recent developments whose synergistic blending has 
made possible revolutionary progress. 

The first, and perhaps most crucial, development has been that of high-speed 
electronic computers, which permit quantitative numerical simulations of nonlinear 
systems. Indeed, the term experimental mathematics has been coined to describe 
computer-based investigations into problems inaccessible to analytic methods. Rather 
than simply confirming quantitatively results already anticipated by qualitative analysis, 
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experimental mathematics uses the computer to generate qualitative insight where none 
has existed before. As the visionary of this development, John von Neumann, wrote 
(in a 1946 article called "On the principles of large scale computing machines"): 

"Our present analytic methods seem unsuitable for the solution of the impor- 
tant problems rising in connection with nonlinear partial differential equations and, 
in fact, with virtually all types of problems in pure mathematics. . . . really efficient 
high-speed computing devices may, in the field of nonlinear partial differential equa- 
tions as well as in many other fields which are now difficult or entirely denied of 
access, provide us with those heuristic hints which are needed in all parts of mathe- 
matics for genuine progress." 

Stan Ulam, together with many of his Los Alarnos colleagues, was one of the very 
first to make this vision a reality. Among Stan's pioneering experimental mathematical 
investigations was the seminal study of the FPU problem mentioned above. Another ex- 
ample was his early numerical work on nonlinear mappings, carried out in collaboration 
with Paul Stein (see "Iteration of Maps, Strange Attractors, and Number Theory-An 
Ulamian Potpourri"). Both of these studies will figure in our later discussion. 

The second crucial development has been the experimental observation of "uni- 
versal" nonlinear characteristics in natural systems that range from chicken hearts and 
chemical reactors to fluids and plasmas. In the past decade these experiments have 
reached previously inaccessible levels of precision, so that one can measure quanti- 
tative similarities in, for example, the route to chaotic behavior among an enormous 
variety of nonlinear systems. 

The third and final development has been in the area of novel analytical mathe- 
matical methods. For instance, the invention of the inverse spectral transform has led 
to a systematic method for the explicit solution of a large number of nonlinear partial 
differential equations. Similarly, new methods based on the theory of Hamiltonian 
systems allow the analysis of nonlinear stability of a wide range of physically relevant 
mathematical models. 

As we shall shortly see, the methodology based on these three developments has 
been remarkably successful in solving many nonlinear problems long considered in- 
tractable. Moreover, the common characteristics of nonlinear phenomena in very dis- 
tinct fields has allowed progress in one discipline to transfer rapidly to others and con- 
firms the inherently interdisciplinary nature of nonlinear science. Despite this progress, 
however, we do not have an entirely systematic approach to nonlinear problems. For 
the general nonlinear equation there is simply no analog of a Fourier transform. We 
do, however, have an increasing number of well-defined paradigms that both reflect 
typical qualitative features and permit quantitative analysis of a wide range of nonlinear 
systems. In the ensuing three sections I will focus on three such paradigms: coherent 
structures and solitons, deterministic chaos and fractals, and complex conjigurations 
and patterns. Of these the first two are well developed and amply exemplified, whereas 
the third is still emerging. Appropriately, these paradigms reflect different aspects of 
nonlinearity: coherent structures reveal a surprising orderliness, deterministic chaos il- 
lustrates an exquisite disorder, and complex configurations represent the titanic struggle 
between opposing aspects of order and chaos. 

If we were to follow the biblical sequence we would start with chaos, but because 
it is frankly a rather counterintuitive concept, we shall start with solitons or, more 
generally and accurately, coherent structures. 

Coherent Structures and Solitons 

From the Red Spot of Jupiter through clumps of electromagnetic radiation in tur- 
bulent plasmas to microscopic charge-density waves on the atomic scale, spatially local- 
ized, long-lived, wave-like excitations abound in nonlinear systems. These nonlinear 

Los Alamos Science Special Issue 1987 



Nonlinear Science 

waves and structures reflect a surprising orderliness in the midst of complex behav- 
ior, Their ubiquitous role in both natural nonlinear phenomena and the corresponding 
mathematical models has caused coherent structures and solitons to emerge as one of 
the central paradigms of nonlinear science. Coherent structures typically represent the 
natural "modes" for understanding the time-evolution of the nonlinear system and often 
dominate the long-time behavior of the motion. 

To illustrate this, let me begin with one of the most familiar (and beautiful!) 
examples in nature, namely, the giant Red Spot (Fig. 3a). This feature, first observed 

from earth in the late seventeenth century, has remained remarkably stable in the 
turbulent cauldron of Jupiter's atmosphere. It represents a coherent structure on a 
scale of about 4 x lo8 meters, or roughly the distance from the earth to the moon. 

To give an example at the terrestrial level, certain classes of nonlinear ocean 
waves form coherent structures that propagate essentially unchanged for thousands of 
miles. Figure 3b is a photograph taken from an Apollo-Soyuz spacecraft of a region 
of open ocean in the Andaman Sea near northern Sumatra. One sees clearly a packet 
of five nearly straight surface waves; each is approximately 150 kilometers wide, so 
the scale of this phenomenon is roughly lo5 meters. Individual waves within the 

COHERENT STRUCTURES 
IN NATURE 

Fig. 3. (a) A closeup of the Red Spot of Jupiter, 
taken from the Voyager spacecraft. False color 
is used to enhance features of the image. In 
addition to the celebrated Red Spot, there are 
many other "coherent structures" on smaller 
scales on Jupiter. (Photo courtesy of NASA). 
(b) Nonlinear surface waves in the Andaman 
Sea off the coast of Thailand as photographed 
from an Apollo-Soyuz spacecraft. (Photo cour- 
tesy of NASA.) 
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COHERENT STRUCTURE 
IN CRYSTALS 

Fig. 4. (a) An image, made by using tunneling- 
electron microscopy, of a cleaved surface of 
tantalum diselenide that shows the expected 
graininess around atomic sites in the crys- 
tal lattice. (b) A similar image of tantalum 

disulfide, showing coherent structures called 

charge-density waves that are not simply a 
reflection of the crystal lattice but arise from 
nonlinear interaction effects. (Photos courtesy 

of C. G. Slough, W. W. McNairy, R. V. Coleman, 
B. Drake, and P. K. Hansma, University of Vir- 
ginia.) 

packet are separated from each other by about 10 kilometers. The waves, which are 
generated by tidal forces, move in the direction perpendicular to their crests at a speed 
of about 2 meters per second. Although the surface deflection of these waves is small- 
about 1.8 meters-they can here be seen from orbit because the sun is directly behind 
the spacecraft, causing the specular reflection to be very sensitive to variations of 
the surface. These visible surface waves are actually a manifestation of much larger 
amplitude-perhaps ten times larger-internal waves. The internal waves exist because 
thermal or salinity gradients lead to a stratification of the subsurface into layers. A priori 
such large internal waves could pose a threat to submarines and to off-shore structures. 
Indeed, the research on these waves was initiated by Exxon Corporation to assess the 
actual risks to the oil rigs they planned to construct in the area. Fortunately, in this 
context the phenomenon turned out to be more beautiful than threatening. 

Our final physical illustration is drawn from solid-state physics, where the phe- 
nomenon of charge-density waves exemplifies coherent structures on the atomic scale. If 
one studies a crystal of tantalum diselenide using an imaging process called tunneling- 
electron microscopy (Fig. 4a), one finds an image that is slightly denser around the 
atomic sites but otherwise is uniform. Given that the experimental technique focuses 
on specfic electronic levels, this graininess is precisely what one would expect at the 
atomic level; there are no nonlinear coherent structures, no charge-density waves. In 
contrast, tantalum disulfide, which has nearly identical lattice parameters, exhibits much 
larger structures in the corresponding image (Fig. 4b); in fact, the image shows a hexag- 
onal array of coherent structures. These charge-density waves are separated by about 
3.5 normal lattice spacings, so their occurence is not simply a reflection of the natural 
atomic graininess. Rather, these coherent structures arise because of a nonlinear cou- 
pling between the electrons and the atomic nuclei in the lattice. Notice that now the 
scale is l o 9  meter. 

Solitons. We have thus identified nonlinear coherent structures in nature on scales 
ranging from lo8 meters to l o 9  meter-seventeen orders of magnitude! Clearly this 
paradigm is an essential part of nonlinear science. It is therefore very gratifying that 
during the past twenty years we have seen a veritable revolution in the understanding of 
coherent structures. The crucial event that brought on this revolution was the discovery, 
by Norman Zabusky and Martin Kruskal in 1965, of the remarkable soliton. In a sense, 
solitons represent the purest form of the coherent-structure paradigm and thus are a 
natural place to begin our detailed analysis. Further, the history of this discovery shows 
the intricate interweaving of the various threads of Stan Ulam's legacy to nonlinear 
science. 

To define a soliton precisely, we consider the motion of a wave described by 
an equation that, in general, will be nonlinear. A traveling wave solution to such 
an equation is one that depends on the space x and time t variables only through the 
combination f = x -vt, where v is the constant velocity of the wave. The traveling wave 
moves through space without changing its shape and in particular without spreading 
out or dispersing. If the traveling wave is a localized single pulse, it is called a solitary 
wave. A soliton is a solitary wave with the crucial additional property that it preserves 
its form exactly when it interacts with other solitary waves. 

The study that led Kruskal and Zabusky to the soliton had its origin in the famous 
FPU problem, indeed in precisely the form shown in Eq. 6. Experimental mathematical 
studies of those equations showed, instead of the equipartition of energy expected on 
general grounds from statistical mechanics, a puzzling series of recurrences of the 
initial state (see "The Ergodic Hypothesis: A Complicated Problem of Mathematics 
and Physics"). Through a series of asymptotic approximations, Kruskal and Zabusky 
related the recurrence question for the system of oscillators in the FPU problem to the 
nonlinear partial differential equation 

(10) 
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Equation 10, called the Korteweg-devries or KdV equation, had first been derived 
in 1895 as an approximate description of water waves moving in a shallow, narrow 
channel. Indeed, the surface waves in the Andarnan Sea, which move essentially in 
one direction and therefore can be modeled by an equation having only one spatial 
variable, are described quite accurately by Eq. 10. That this same equation should also 
appear as a limiting case in the study of a discrete lattice of nonlinear oscillators is an 
illustration of the generic nature of nonlinear phenomena. 

To look analytically for a coherent structure in Eq. 10, one seeks a localized 
solution us(O that depends only on = x - vt, thereby reducing the partial differential 
equation to an ordinary differential equation in <. The result can be integrated explicitly 
and, for solutions that vanish at infinity, yields 

2 V^ us(x, t )  = 3v sech -(x - vt). 
2 

This solution describes a solitary wave moving with constant velocity v .  Moreover, 
the amplitude of the wave is proportional to v ,  and its width is inversely proportional 
to fi. The faster the wave goes, the narrower it gets. This relation between the shape 
and velocity of the wave reflects the nonlinearity of the KdV equation. 

Intuitively, we can understand the existence of this solitary wave as a result of 
a delicate balance in the KdV equation between the linear dispersive term $, which 
tends to cause an initially localized pulse to spread out and change shape as it moves, 
and the nonlinear convective derivative term u g, which tends to increase the pulse 
where it is already large and hence to bunch up the disturbance. (For a more precise 
technical analysis of these competing effects in another important nonlinear equation, 
see "Solitons in the Sine-Gordon Equation.") 

Although the solution represented by Eq. 11 is, by inspection, a coherent structure, 
is it a soliton? In other words, does it preserve its form when it collides with another 
solitary wave? Since the analytic methods of the 1960s could not answer this question, 
Zabusky and Kruskal followed another of Ulam's leads and adopted an experimental 
mathematics approach by performing computer simulations of the collision of two 
solitary waves with different velocities. Their expectation was that the nonlinear 
nature of the interaction would break up the waves, causing them to change their 
properties dramatically and perhaps to disappear entirely. When the computer gave 
the startling result that the coherent structures emerged from the interaction unaffected 
in shape, amplitude, and velocity, Zabusky and Kruskal coined the term "soliton," a 
name reflecting the particle-like attributes of this nonlinear wave and patterned after 
the names physicists traditionally give to atomic and subatomic particles. 

In the years since 1965 research has revealed the existence of solitons in a host 
of other nonlinear equations, primarily but not exclusively in one spatial dimension. 
Significantly, the insights gained from the early experimental mathematical studies 
have had profound impact on many areas of more conventional mathematics, including 
infinite-dimensional analysis, algebraic geometry, partial differential equations, and 
dynamical systems theory. To be more specific, the results of Kruskal and Zabusky 
led directly to the invention of a novel analytic method, now known as the "inverse 
spectral transform," that permits the explicit and systematic solution of soliton-bearing 
equations by a series of effectively linear operations. Further, viewed as nonlinear 
dynamical systems, the soliton equations have been shown to correspond to infinite- 
degree-of-freedom Hamiltonian systems that possess an infinite number of independent 
conservation laws and are thus completely integrable. Indeed, the invariance of solitons 
under interactions can be understood as a consequence of these conservation laws. 

Applied Solitons. From all perspectives nonlinear partial differential equations con- 
taining solitons are quite special. Nonetheless, as our examples suggest, there is a 
surprising mathematical diversity to these equations. This diversity is reflected in the 

Los Alamos Science Special Issue 1987 



Nonlinear Science 

substitution into 
that, with q z , x  - SOLITONS in mw. 

the SINE- 
GORDON 
n . "solitary waves," moving te the left 
bquation 

plot of the internet!on 

TWO SQLfmN8 , the two steplike solitary 

anÃ§1yUcall by Eq. 9. 

of waves 
wlh valses of A peaked a 
ular d u e  fe meves. Notice that 
(fi relation &" 4fe, 

corresponding variety of real-world applications to problems in the natural sciences and 
engineering. In fiber optics, conducting polymers and other quasi-one-dimensional sys- 
tems, Josephson transmission lines, and plasma cavitons-as well as the surface waves 
in the ~ndaman  Sea!-the prevailing mathematical models are slight modifications of 
soliton equations. There now exist several numerical and analytic perturbation tech- 
niques for studying these "nearly" soliton equations, and one can use these to describe 
quite accurately the behavior of real physical systems. 

One specific, decidedly practical illustration of the application of solitons concerns 
effective long-distance communication by means of optical fibers. Low-intensity light 
pulses in optical fibers propagate linearly but dispersively (as described in "Solitons 
in the Sine-Gordon Equation"). This dispersion tends to degrade the signal, and, as a 
consequence, expensive "repeaters" must be added to the fiber at regular intervals to 
reconstruct the pulse. 

However, if the intensity of the light transmitted through the fiber is substantially 
increased, the propagation becomes nonlinear and solitary wave pulses are formed. 
In fact, these solitary waves are very well described by the solitons of the "nonlinear 
Schrodinger equation," another of the celebrated completely integrable nonlinear partial 
differential equations. In terms of the (complex) electric field amplitude E ( x ,  t ) ,  this 
equation can be written 
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so that (groups of) waves with different 
values of ko will have different group ve- 
locities. Now consider a general solu- 
tion to Eq. 2, which, by the principle of 
superposition, can be formed by adding 
together many plane waves (each with a 
different constant). Since the elementary 
components with different wave numbers 
will propagate at different group veloci- 
ties, the general solution will change its 
form, or disperse, as it moves. Hence, 
the general solution to Eq. 2 cannot be a 
soliton. 

Next consider adding a nonlinear term 
to Eq. 2. With considerable malice afore- 
thought, we change notation for the de- 
pendent variable and choose the nonlin- 
earity so that the full equation becomes 

a20 2a20 2 .  
- - c0 Ã‘ + m sin 6' = 0, (5) 
at2 ax 

the "sine-Gordon" equation. We can com- 
pare Eq. 5 to our previous Eq. 2 by noting 
that in the limit of small 0, Eq. 5 reduces 
to 

where the remaining terms are 0(05) and 
higher. 

Based on remarks made in the intro- 
ductory section of the main text, we see 
that Eq. 5 looks like a bunch of sim- 
ple, plane pendulums coupled together by 
the spatial derivative term Q20/Qx2. In 
fact, the sine-Gordon equation has many 
physical applications, including descrip- 

tions of chain-like magnetic compounds 
and transmission lines made out of arrays 
of Josephson junctions of superconduc- 
tors. Also, the equation is one of the 
celebrated completely integrable, infinite- 
degree-of-freedom Harniltonian systems, 
and the initial-value problem for the equa- 
tion can be solved exactly by the analytic 
technique of the "inverse spectral trans- 
form." Since the details of this method 
are well beyond the scope of a general 
overview, we shall only quote the solu- 
tions relevant to our discussion. First, just 
as for the KdV equation (Eq. 10 in the 
main text), one can find directly a single 
solitary-wave solution: 

with 7 = 1 / d 1 - v ^  C = m / c o ,  and 
r = mt. 

Since this solution approaches 0 as 
x - -oo and 27r as x -Ã +m, it de- 
scribes a glitch in the field 0 localized 
around C = VT, that is, around x = 
covt. As a consequence, it is known as 
a "kink." Importantly, it does represent a 
physically truly localized excitation, be- 
cause all the energy and momentum as- 
sociated with this wave are exponentially 
centered around the kink's location. Sim- 
ilarly, the so-called anti-kink solution 

&(x, t) = 4 tan-' e"7^-v7'", (8) 

interpolates between 27r as x -Ã -oo and 
0 a s x  -  ̂+oo. 

Are the kinks and anti-kinks solitons? 

Here we can avail ourselves of the mira- 
cle of integrability and simply write down 
an analytic solution that describes the 
scattering of a kink and an antikink. The 
result is 

s i n .  -KC- 

ffij,(x, t )  = 4tan-' 

(9) 
The dedicated reader can verify that as 
t -+ -oo, bi, looks like a widely sepa- 
rated kink and anti-kink approaching each 
other at velocity v. For t near 0 they 
interact nonlinearly, but as t + +a, 
the kink and anti-kink emerge with their 
forms intact. Readers with less dedication 
can simply refer to the figure, in which 
the entire collision process is presented 
in a space-time plot. Note that since the 
equation is invariant under 0 -+ 0+2n7r, a 
kink that interpolates between 27r and 47r 
is physically equivalent to one that inter- 
polates between 0 and 27r. 

In the interest of historical accuracy, 
we should add one final point. The an- 
alytic solution, Eq. 9, showing that the 
kink and anti-kink are in fact solitons, 
was actually known, albeit not widely, 
before the discovery of the KdV soliton. 
It had remained an isolated and arcane cu- 
riosity, independently rediscovered sev- 
eral times but without widespread impact. 
That such solutions could be constructed 
analytically in a wide range of theories 
was not appreciated. It took the ex- 
perimental mathematics of Zabusky and 
Kruskal to lead to the soliton revolution. I 

The soliton corresponding to the nonlinear pulse moving with velocity v through the 
optical fiber has the form 

In the idealized limit of no dissipative energy loss, these solitons propagate without 
degradation of shape; they are indeed the natural stable, localized modes for propagation 
in the fiber. An intrinsically nonlinear characteristic of this soliton, shown explicitly in 
Eq. 13, is the relation between its amplitude (hence its energy) and its width. In real 
fibers, where dissipative mechanisms cause solitons to lose energy, the individual soliton 
pulses therefore broaden (but do not disperse). Thus, to maintain the separation between 
solitons necessary for the integrity of the signal, one must add optical amplifiers, based 
on stimulated Raman amplification, to compensate for the loss. 

Theoretical numerical studies suggest that the amplification can be done very 
effectively. An all-optical system with amplifier spacings of 30 to 50 kilometers and 
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Raman pump power levels less than 100 milliwatts can use solitons of 20 picoseconds 
duration to send information at a bit rate of over 10 gigahertz. This is more than an 
order of magnitude greater than the rate anticipated for conventional (linear) systems. 
Although laboratory experiments have confirmed some of these results, full engineering 
studies have yet to be carried out. In addition, a critical and still unresolved issue is the 
relative cost of the repeaters supporting the linear system versus that of the amplifiers 
in the soliton-based approach. Nonetheless, the prospects for using optical solitons in 
long-distance communication are exciting and real. 

Coherent Structures. Thus far our discussion of the coherent-structure paradigm 
has focused almost exclusively on solitons. Although this emphasis correctly indicates 
both the tremendous interest and the substantial progress to which this aspect of the 
paradigm has led, it obscures the much broader role that nornoliton coherent structures 
play in nonlinear phenomena. Vortices in fluids, chemical-reaction waves and nonlinear 
diffusion fronts, shock waves, dislocations in metals, and bubbles and droplets can all 
usefully be viewed as instances of coherent structures. As in the case of the solitons, the 
existence of these structures results from a delicate balance of nonlinear and dispersive 
forces. 

In contrast to solitons, however, these more general coherent structures typically 
interact strongly and do not necessarily maintain their form or even their separate 
identities for all times. Fluid vortices may merge to form a single coherent structure 
equivalent to a single larger vortex. Interactions among shock waves lead to diffraction 
patterns of incident, reflected, and transmitted shocks. Droplets and bubbles can 
interact through merging or splitting. Despite these nontrivial interactions, the coherent 
structures can be the nonlinear modes in which the dynamics is naturally described, and 
they may dominate the long-time behavior of the system. To exemplify more concretely 
the essential role of these general coherent structures in nonlinear systems, let me focus 
on two broad classes of such structures: vortices and fronts. 

The importance of vortices in complicated fluid flows and turbulence has been 
appreciated since ancient times. The giant Red Spot (Fig. 3a) is a well-known example 
of a fluid vortex, as are tornados in the earth's atmosphere, large ocean circulation 
patterns called "modons" in the Gulf Stream current, and "rotons" in liquid helium. 
In terms of practical applications, the vortex pattern formed by a moving airfoil is 
immensely important. Not only does this pattern of vortices affect the fuel efficiency 
and performance of the aircraft, but it also governs the allowed spacing between planes 
at takeoff and landing. More generally, vortices are the coherent structures that make 
up the turbulent boundary layer on the surfaces of wings or other objects moving 
through fluids. Further, methods based on idealized point vortices provide an important 
approach to the numerical simulation of certain fluid flows. 

The existence of fronts as coherent structures provides yet another illustration of 
the essential role of nonlinearity in the physical world. Linear diffusion equations 
cannot support wave-like solutions. In the presence of nonlinearity, however, diffu- 
sion equations can have traveling wave solutions, with the propagating wave front 
representing a transition from one state of the system to another. Thus, for example, 
chemical reaction-diffusion systems can have traveling wave fronts separating reacted 
and unreacted species. Often, as in flame fronts or in internal combustion engines, 
these traveling chemical waves are coupled with fluid modes as well. Concentration 
fronts arise in the leaching of minerals from ore beds. Moving fronts between infected 
and non-infected individuals can be identified in the epidemiology of diseases such as 
rabies. In advanced oil recovery processes, (unstable) fronts between the injected water 
and the oil trapped in the reservoir control the effectiveness of the recovery process. 

Given their ubiquity and obvious importance in nonlinear phenomena, it is gratify- 
ing that recent years have witnessed remarkable progress in understanding and modeling 
these general coherent structures. Significantly, this progress has been achieved by pre- 
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cisely the synergy among computation, theory, and experiment that we have argued 
characterizes nonlinear science. Further, as a consequence of this progress, coherent 
structures and solitons have emerged as an essential paradigm of nonlinear science, 
providing a unifying concept and an associated methodology at the theoretical, com- 
putational, and experimental levels. The importance of this paradigm for technological 
applications, as well as its inherent interest for fundamental science, will guarantee its 
central role in all future research in this subject. 

Deterministic Chaos and Fractals 

Deterministic chaos is the term applied to the aperiodic, irregular, unpredictable, 
random behavior that in the past two decades has been observed in an incredible variety 
of nonlinear systems, both mathematical and natural. Although the processes are strictly 
deterministic and all forces are known, the long-time behavior defies prediction and is 
as random as a coin toss. 

That a system governed by deterministic laws can exhibit effectively random 
behavior runs directly counter to our normal intuition. Perhaps it is because intuition is 
inherently "linear;" indeed, deterministic chaos cannot occur in linear systems. More 
likely, it is because of our deeply ingrained view of a clockwork universe, a view 
that in the West was forcefully stated by the great French mathematician and natural 
philosopher Laplace. If one could know the positions and velocities of all the particles 
in the universe and the nature of all the forces among them, then one could chart the 
course of the universe for all time. In short, from exact knowledge of the initial state 
(and the forces) comes an exact knowledge of the final state. In Newtonian mechanics 
this belief is true, and to avoid any possible confusion, I stress that we are considering 
only dynamical systems obeying classical, Newtonian mechanics. Subsequent remarks 
have nothing to do with "uncertainties" caused by quantum mechanics. 

However, in the real world exact knowledge of the initial state is not achievable. 
No matter how accurately the velocity of a particular particle is measured, one can 
demand that it be measured more accurately. Although we may, in general, recognize 
our inability to have such exact knowledge, we typically assume that if the initial 
conditions of two separate experiments are almost the same, the final conditions will 
be almost the same. For most smoothly behaved, "normal" systems this assumption 
is correct. But for certain nonlinear systems it is false, and deterministic chaos is the 
result. 

At the turn of this century, Henri Poincark, another great French mathematician and 
natural philosopher, understood this possibility very precisely and wrote (as translated 
in Science and Method): 

"A very small cause which escapes our notice determines a considerable effect 
that we cannot fail to see, and then we say that that effect is due to chance. If we 
knew exactly the laws of nature and the situation of the universe at the initial mo- 
ment, we could predict exactly the situation of that same universe at a succeeding 
moment. But even if it were the case that the natural laws had no longer any secret 
for us, we could still only know the initial situation approximately. If that enabled 
us to predict the succeeding situation with the same approximation, that is all we re- 
quire, and we should say that the phenomenon had been predicted, that it is governed 
by laws. But it is not always so; it may happen that small differences in the initial 
conditions produce very great ones in the final phenomena. A small error in the for- 
mer will produce an enormous error in the later. Prediction becomes impossible, and 
we have the fortuitous phenomenon." 

Despite Poincari's remarkable insight, deterministic chaos remained virtually unex- 
plored and unknown until the early 1960s. As the ensuing discussion will reveal, 
the reason for this long hiatus is that chaos defies direct analytic treatment. The seeds 
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planted by Poincard could only germinate when the advances in interactive computation 
made experimental mathematics a reality. 

The Logistic Map. One remarkable instance of a successful experimental mathemat- 
ical study occurred in a nonlinear equation simple enough to explain to an elementary 
school child or to analyze on a pocket calculator yet subtle enough to capture the 
essence of a whole class of real world phenomena. It is arguably the simplest model 
of a system displaying deterministic chaos, and as such has been studied by a host of 
distinguished researchers, including Ulam, von Neumann, Kac, Metropolis, Stein, May, 
and Feigenbaum (see "Iteration of Maps, Strange Attractors, and Number theory-An 
Ulamian Potpourri"). As we shall see, this focus of talent has been fully justified, for 
the simple model provides remarkable insight into a wealth of nonlinear phenomena. 
Thus it is a natural place to begin our quantitative study of deterministic chaos. 

The model, known as the logistic map, is a discrete-time, dissipative, nonlinear 
dynarnical system. The value of a variable xn at time n is mapped to a new value xn+1 
at time n + 1 according to the nonlinear function 

where the control parameter r satisfies 0 < r < 4 and the allowed values-loosely 
speaking, the phase s p a c e ~ o f  the xn are 0 5 xn < 1. The map is iterated as many 
times as desired, and one is particularly interested in the behavior as time-that is, n ,  
the number of iterations-approaches infinity. Specifically, if an initial condition is 
picked at random in the interval (0, 1) and iterated many times, what is its motion after 
all transients have died out? 

The behavior of this nonlinear map depends critically on the control parameter and 
exhibits in certain regions sudden and dramatic changes in response to small variations 
in r .  These changes, technically called bifurcations, provide a concrete example of 
our earlier observation that small changes in the parameters of a nonlinear system can 
produce enormous qualitative differences in the motion. 

For 0 < r < I, the value of xn drops to 0 as n approaches infinity no matter what 
its inital value. In other words, after the transients disappear, all points in the interval 
(0 , l )  are attracted to the fixed point x *  at x = 0. This fixed point is analogous to 
the fixed point in Fig. 2 at (6 = 0, dO/dt = 0) with the very important distinction that 
the fixed point in the logistic map is an attractor: the dissipative nature of the map 
causes the "volume" in phase space to collapse to a single point. Such attractors are 
impossible in Hamiltonian systems, since their motion preserves phase-space volumes 
(see "Hamiltonian Chaos and Statistical Mechanics"). The mathematical statement of 
this behavior then is 

lim xn = x *  = 0. 
n-00 

We can easily calculate the (linearized) stability of this fixed point by considering 
how small deviations from it behave under the map. In Eq. 14 we set xn = x* + en and 
xn+l = x* + en+l and consider only terms linear in en and en+, . The resulting equation is 

so that for x* = 0, the en's will remain small for all iterations-provided r < 1. 
This last comment suggests that something interesting happens as r passes 1, and 

indeed for 1 < r < 3 we find an attracting fixed point with a value that depends on r .  
This value is readily calculated, since at a fixed point xn = xn+1 = x*. Substituting this 
relation into Eq. 14, we find 

1 
lim xn =x*( r )=  1 - - 

n-00 r 
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Hence as the value of r moves from 1 toward 3, the value of the fixed point x *  moves 
from 0 toward 213. Notice that the linear stability analysis given above shows that 
this r-dependent fixed point is stable for 1 < r < 3. Notice also that while x* = 0 is 
still a fixed point in this region, the linear stability analysis shows that it is unstable. 
Hence the point x = 0 is now analogous to the unstable fixed point in Fig. 2 at 6 = TT, 

d6/dt = 0; the slightest perturbation will drive the solution away from x = 0 to the 
stable fixed point at x*(r). 

A more interesting bifurcation occurs at r = 3. Suddenly, instead of approaching a 
single fixed point, the long-time solution oscillates between two values: thus the model 
has an attracting limit cycle of period 2! This limit cycle is the discrete analogue of the 
closed periodic oscillations shown in the phase plane of the pendulum (Fig. 2), again, 
of course, subject to the distinction that the logistic-map limit cycle is an attractor. 

Although one can still continue analytically at this stage, it is easier to refer to the 
results of an experimental mathematical simulation (Fig. 5) that depicts the attracting set 
in the logistic map as a function of r .  Here we see clearly the bifurcation to the period-2 
limit cycle at r = 3. But more striking, as r moves toward 3.5 and beyond, period-4 
and then period-8 limit cycles occur, followed by a region in which the attracting set 
becomes incredibly complicated. A careful anlysis of the logistic map shows that the 
period-8 cycle is followed by cycles with periods 16, 32, 64, and so forth. The process 
continues through all values 2" so that the period approaches infinity. Remarkably, all 
this activity occurs in the finite region of r below the value rc - 3.57. 

Above re the attracting set for many (but not all) values of r shows no periodicity 
whatsoever. In fact, the set consists of a sequence of points xn that never repeats 
itself. For these values of r ,  the simple logistic map exhibits deterministic chaos, and 
the attracting set-far more complex than the fixed points and limit cycles seen below 
rc-is called a strange attractor. Beyond the critical value rc, the logistic map exhibits 
a transition to chaos. 

Although this complicated, aperiodic behavior clearly motivates the name "chaos," 
does it also have the crucial feature of sensitive dependence on initial conditions that 
we argued was necessary for the long-time behavior to be as random as a coin toss? 
To study this question, one must observe how two initially nearby points separate as 
they are iterated by the map. Technically, this can be done by computing the Lyapunov 
exponent A. A value of A greater than 0 indicates that the nearby initial points separate 
exponentially (at a rate determined by A). If we plot the Lyapunov exponent as a 
function of the control parameter (Fig. 6), we see that the chaotic regions do have 
A > 0 and, moreover, the periodic windows in Fig. 5 that exist above re correspond to 
regions where A < 0. That such a filigree of interwoven regions of periodic and chaotic 
motion can be produced by a simple quadratically nonlinear map is indeed remarkable. 

In view of the complexity of the attracting sets above re, it is not at all surprising 
that this model, like the typical problem in chaotic dynamics, defied direct analytic 
approaches. There is, however, one elegant analytic result-made all the more relevant 
here by its having been discovered by Ulam and von Neumann-that further exemplifies 
the sensitive dependence that characterizes deterministic chaos. 

For the particular value r = 4, if we let xn = sin2 On, the logistic map can be 
rewritten 

sin2 = 4 sin2 On cos2 On = (2 sin On cos 6 ) '  = (sin 2 0 ~ ) ~  . 

Hence the map is simply the square of the doubling formula for the sine function, and 
we see that the solution is On+\ = 2Qn. In terms of the initial value, On, this gives 

This solution makes clear, first, that there is a very sensitive dependence to initial 
conditions and, second, that there is a very rapid exponential separation from adjacent 
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initial conditions. For example, by writing Q,, as a binary number with a finite number 
of digits-as one would in any digital computer-we see that the map amounts to a 
simple shift operation. When this process is carried out on a real computer, round-off 
errors replace the right-most bit with garbage after each operation, and each time the 
map is iterated one bit of information is lost. If the initial condition is known to 48 bits 
of precision, then after only 48 iterations of the map no information about the initial 
condition remains. Said another way, despite the completely deterministic nature of 
the logistic map, the exponential separation of nearby initial conditions means that all 
long-time information about the motion is encoded in the initial state, whereas none 
(except for very short times) is encoded in the dynamics. 

There is still much more that we can learn from this simple example. One question 
of obvious interest in nonlinear systems is the mechanism by which such systems move 
from regular to chaotic motion. In the logistic map, we have seen that this occurs 
via a period-doubling cascade of bifurcations: that is, by a succession of limit cycles 
with periods increasing as 2". In a classic contribution to nonlinear science, Mitchell 
Feigenbaum analyzed the manner in which this cascade occurred. Among his first 
results was the observation that the values of the parameter r at which the bifurcations 
occurred converged geometrically: namely, with 6,, defined by 

he found 
lim EE 6 = 4.669.. . . 

n - m  

More important, Feigenbaum was able to show that 6 did not depend on the details 
of the logistic m a p t h e  function need only have a "generic" maximum, that is, one 
with a nonvanishing second derivative-and hence 6 should be universal for all generic 
maps. Even more, he was able to argue convincingly that whenever a period-doubling 
cascade of bifurcations is seen in a dissipative dynarnical system, the universal number 
6, as well as several other universal quantities, should be observed independent of the 
system's phase-space dimension. 

This prediction received dramatic confirmation in an experiment carried out by 
Albert Libchaber and J. Maurer involving convection in liquid helium at low tempera- 
tures. Their observation of the period-doubling cascade and the subsequent extraction 
of 6 and other universal parameters provided striking proof of universal behavior in 
nonlinear systems. More recently, similar confirmation has been found in experiments 
on nonlinear electrical circuits and semiconductor devices and in numerical simulations 
of the damped, driven pendulum. Further, it is now known rigorously for dissipative 
systems that the universal behavior of the period-doubling transition to chaos in the 
logistic map can occur even when the phase-space dimension becomes infinite. 

It is important to emphasize that the period-doubling cascade is by no means 
the only way in which dissipative nonlinear systems move from regular motion to 
chaos (see, for example, the discussion of the indented trapezoid map on pp. 103- 
104). Many other routes-such as quasiperiodic and intermittent-have been identified 
and universality theories have been developed for some of them. But the conceptual 
progenitor of all these developments remains the simple logistic map. 

Finally, Fig. 5b illustrates one additional obvious feature of the attracting set of 
Eq. 14: namely, that it contains nontrivial-and, in fact, self-similar-structure under 
magnification. Indeed, in the mathematical model this self-similar structure occurs on 
all smaller scales; consequently, Fig. 5b is one example of a class of complex, infinitely 
ramified geometrical objects called fractals. We shall return to this point later. 

The Damped, Driven Pendulum. Armed with the quantitative insight gained from 
the logistic map, we can confront deterministic chaos in more conventional dynarnical 
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systems. We start with a very familiar example indeed: namely, the plane pendulum 
subjected to driving and damping. We can now make precise our earlier assertion that 
this simple system can behave in a seemingly random, unpredictable, chaotic manner 
(see "The Simple but Nonlinear Pendulum"). 

The motion of the damped, driven pendulum is described by Eq. 4 above. Apart 
from its application to the pendulum, Eq. 4 describes an electronic device called a 
Josephson tunneling junction in which two superconducting materials are separated 

THE LYAPUNOV EXPONENT 

Fig. 6. A positive value for the Lyapunov expo- 
nent (A > 0) indicates that nearby initial points 
separate exponentially, whereas negative val- 
ues (A < 0) indicate periodic or quasiperiodic 
motion. Here the Lyapunov exponent is plot- 
ted as a function of the control parameter r 
for the logistic map (Fig. 5), and it can be seen 
that the periodic windows of Fig. 5 correspond 
to regions where A < 0. (Figure courtesy 
of Gottfried Mayer-Kress and Hermann Haken, 
Universitat Stuttgart, FRG.) 

by a thin nonconducting oxide layer. Among the present practical applications of 
such junctions are high-precision magnetometers and voltage standards. The ability 
of these Josephson junctions to switch rapidly (tens of picoseconds) and with very 
low dissipation (less than microwatts) from one current-carrying state to another may 
provide microcircuit technologies for, say, supercomputers that are more efficient than 
those based on conventional semiconductors. Hence the nature of the dynamic response 
of a Josephson junction to the external driving force-the F cos Or term in Eq. &is a 
matter of technological, as well as fundamental, interest. 

Since analytic techniques are of limited use in the chaotic regime, we demonstrate 
the existence of chaos in Eq. 4 by relying on graphical results from numerical simu- 
lations. Figure 7 illustrates how the phase plane (Fig. 2) of the pendulum is modified 
when driving and damping forces are included and, in particular, shows how the simple 
structure involving fixed points and limit cycles is dramatically altered. 

THE LOGISTIC MAP 

Fig. 5. (a) The attracting set for the logistic 
map (Eq. 14 in the main text) generated by plot- 
ting 300 values of the iterated function (after 
the transients have died out) for each of 1150 
values of the control parameter r. The map has 
a cycle of period 2 when the control parame- 
ter r is at 3.4 (left edge). This cycle quickly 
"bifurcates" to cycles of periods 4, 8, 16, and 
so forth as r increases, generating a period- 
doubling cascade. Above rc Ã 3.57 the map 
exhibits deterministic chaos interspersed with 
gaps where periodic motion has returned. For 
example, cycles of periods 6, 5, and 3 can be 
seen in the three larger gaps to the right. (b) A 
magnified region (shown as a small rectangle 
in (a)) illustrates the self-similar structure that 
occurs at smaller scales. (Figure courtesy of 
Roger Eckhardt, Los Alamos National Labora- 

tory.) 
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THE DAMPED, DRIVEN PENDULUM: 
A STRANGE ATTRACTOR 

Fig. 7. The motion of a damped, periodically 

driven pendulum (Eq. 4 in the main text) for 

certain parameter values is chaotic with the 

attracting set being a "strange attractor." An 

impression of such motion can be obtained 

by plotting the position 0 and velocity 8 of 

the pendulum once every cycle of the driving 

force (as shown here for a = 0.3, r = 4.5, and 

n = 0.6 in units with g /1  = 4). The fact that the 

image is repeated at higher and lower values 

of 8 is a result of the pendulum swinging over 
the top of its pivot point. (Figure courtesy 

of James Crutchfield, University of California, 

Berkeley.) 

We note first that since there is an external time dependence in Eq. 4, the system 
really involves three first-order differential equations. In a normal dynamical system 
each degree of freedom results in two first-order equations, so this system is said to 
correspond to one-and-a-half degrees of freedom. To see this explicitly, we introduce 
a variable z = a t ,  recall that the angular momentum pg = m12dQ/dt, and rewrite Eq. 4, 
resulting in 

* = -ape - mgl sin 0 + m12r cos z , 
dt 

which shows how the system depends on the three generalized coordinates: 6, pg, and 
z .  Note further that the presence of damping implies that the system is no longer 
Harniltonian but rather is dissipative and hence can have attractors. 

Analysis of the damped, driven pendulum neatly illustrates two separate but related 
aspects' of chaos: first, the existence of a strange attractor, and second, the presence of 
several different attracting sets and the resulting extreme sensitivity of the asymptotic 
motion to the precise initial conditions. 

Figure 7 shows one of the attractors of Eq. 22 for the parameter values a = 0.3, 
r = 4.5, and Cl = 0.6 (in units with g / I  = 4). As in the case of the logistic map, only 
the attracting set is displayed; the transients are not indicated. To obtain Fig. 7, which 
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is a plot showing only the phase-plane variables 6 and 6, one takes a "stroboscopic 
snapshot" of the motion once during every cycle of the driving force. The complicated 
attracting set shown in the figure is in fact a strange attractor and describes a never- 
repeating, nonperiodic motion in which the pendulum oscillates and flips over its pivot 
point (hence the repeated images at 2~-multiples of the angle) in an irregular, chaotic 
manner. The sensitive dependence on initial conditions implies that nearby points 
on the attractor will separate exponentially in time, following totally different paths 
asymptotically. Enlargements of small regions of Fig. 7 show a continuation of the 
intricate structure on all scales; like the attracting set of the logistic map, this strange 
attractor is a fractal. 

To visualize the motion on this attractor, it may be helpful to recall the behavior 
of an amusing magnetic parlor toy that has recently been quite popular. This device, 
for which the mathematical model is closely related to the damped, driven pendulum 
equation, spins first one way and then the other. At first it may seem that one can guess 
its behavior. But just when one expects it to spin three times to the right and then go 
to the left, it instead goes four, five, or perhaps six times to the right. The sequence of 
right and left rotations is unpredictable because the system is undergoing the aperiodic 
motion characteristic of a strange attractor. 

Figure 8 illustrates the important point that the strange attractor of Fig. 7 is not the 
only attractor that exists for Eq. 22. Specifically, for a. = 0.1, T = 714, and 0 = 1 (now 
in units of g / l  = I), the system is attracted to periodic limit cycles of clockwise or 
counterclockwise motion. Figure 8 demonstates this with another variant of our familiar 
phase-plane plot in which a color code is used to indicate the long-time behavior of all 
points in the plane. More precisely, this plot is a map of every initial state (6, 0)  onto 
a "final state" corresponding to one of the attractors. A blue dot is plotted at a point in 
the plane if the solution that starts from that point at t = 0 is attracted asymptotically 
to the limit cycle corresponding to clockwise rotation of the pendulum. Similarly, a 
red dot is plotted for initial points for which the solution asymptotically approaches 
counterclockwise rotation. 

In Fig. 8 we observe large regions in which all the points are colored red and, hence, 
whose initial conditions lead to counterclockwise rotations. Similarly, there are large 
blue regions leading to clockwise rotations. In between, however, are regions in which 
the tiniest change in initial conditions leads to alternations in the limit cycle eventually 
reached. In fact, if you were to magnify these regions even more, you would see further 
alternations of blue and red-even at the finest possible level. In other words, in these 
regions the final state of the pendulum~clockwise or counterclockwise motion-is an 
incredibly sensitive function of the exact initial point. 

There is an important subtlety here that requires comment. For the red and blue 
regions the asymptotic state of the pendulum does not correspond to chaotic motion, 
and the two attracting sets are not strange attractors but are rather just the clockwise and 
counterclockwise rotations that exist as allowed motions even for the free pendulum 
(Fig. 2). The aspect of chaos that is reflected by the interwoven red and blue regions is 
the exquisite sensitivity of the final state to minute changes in the initial state. Thus, in 
regions speckled with intermingled red and blue dots, it is simply impossible to predict 
the final state because of an incomplete knowledge of initial conditions. 

In addition to the dominant red and blue points and regions, Fig. 8 shows much 
smaller regions colored greenish white and black. These regions correspond to still 
other attracting limit sets, the greenish-white regions indicating oscillatory limit cycles 
(no rotation) and the black regions indicating points that eventually go to a strange 
attractor. 

From the example of Fig. 8 we learn the important lesson that a nonlinear dis- 
sipative system may contain many different attractors, each with its own basin of at- 
traction, or range of initial conditions asymptotically attracted to it. A subtle further 
consequence of deterministic chaos is that the boundaries between these basins can 
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themselves be extraordinarily complex and, in fact, fractal. A fractal basin boundary 
means that qualitatively different long-time behaviors can result from nearly identical 
initial configurations. 

The Lorenz Attractor. In both cases of the logistic map and the damped, driven 
pendulum, we have indicated that strange attractors are intimately connected with the 
presence of dissipative deterministic chaos. These exotic attracting sets reflect motions 

THE DAMPED, DRIVEN PENDULUM: 
PERIODIC LIMIT-CYCLE 
ATTRACTORS 

Fig. 8. In this variation of the phase plot for 
the damped, driven pendulum, a blue dot is 
plotted at a point in  the plane if the solution 
that starts from that point at t = 0 is attracted 
to clockwise rotation, whereas a red dot rep- 
resents an attraction to counterclockwise ro- 
tation, and a greenish-white dot represents an 
attraction to  any oscillatory limit cycle without 
rotation. Only a portion of the phase plane is 
shown. The conditions used to show these 
limit-cycle attractors are a = 0.1, I? = 7/4, 
and n = 1 (in units of g/1 = 1). Despite the 
nonchaotic motion of the limit cycles, sensi- 
tive dependence on initial conditions is still 
quite evident from the presence of extensive 
regions of intermingled red and blue. Further, 

the black regions indicate initial conditions for 
which the limiting orbit is a strange attractor. 
(Figure courtesy of Celso Grebogi, Edward Ott, 
James Yorke, and Frank Varosi, University of 
Maryland.) 

of the system that, even though they may occur in a bounded region of phase space, are 
not periodic (thus never repeating), and motions originating from nearby initial points 
on the attractor separate exponentially in time. Further, viewed as geometric objects 
these attractors have an infinitely foliated form and exhibit intricate structure on all 
scales. 

To develop a clearer understanding of these admittedly bizarre objects and the 
dynarnical motions they depict, we turn to another simple nonlinear dynamical model. 
Known as the Lorenz equations, this model was developed in the early 1960s by 
Edward Lorenz, a meteorologist who was convinced that the unpredictability of weather 
forecasting was not due to any external noise or randomness but was in fact compatible 
with a completely deterministic description. In this sense, Lorenz was attempting to 
make precise the qualitative insight of Poincark, who, in another prescient comment- 
all the more remarkable for its occurring in the paragraph immediately following our 
earlier quotation from Science and Method-observed: 

"Why have meteorologists such difficulty in predicting the weather with any 
certainty?. . .We see that great disturbances are generally produced in regions where 
the atmosphere is in unstable equilibrium. The meteorologists see very well that the 
equilibrium is unstable, that a cyclone will be fanned somewhere, but exactly where 
they are not in a position to say; a tenth of a degree more or less at any given point, 
and the cyclone will burst here and not there, and extend its ravages over districts it 
would otherwise have spared. . . .Here, again, we find the same contrast between a 
very trifling cause that is inappreciable to the observer, and considerable effects, that 
are sometimes terrible disasters." 
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To demonstrate this sensitive dependence, Lorenz began with a simplified model 
approximating fluid convection in the atmosphere. By expanding this model in (spatial) 
Fourier modes and by truncating the expansion to the three lowest modes and explicitly 
ignoring couplings to higher modes, Lorenz obtained a closed system of three nonlinear 
ordinary first-order differential equations: 

y = -xz +rx - v. and 

z =xy  - bz. 

In the application to atmospheric convection, x measures the rate of convective over- 
turning, y and z measure the horizontal and vertical temperature variations, respectively, 
i7 is the Prandtl number, r is the Rayleigh number, and b (# 1) reflects the fact that the 
horizontal and vertical temperature structures do not generally damp at the same rate. 

As in the case of the damped, driven pendulum, the model describes a system with 
one-and-a-half degrees of freedom because it consists of three first-order equations. One 
set of parameters (17 = 10, r = 28, and b = 8/3) yields the celebrated Lorenz attractor, 
for which perspective views (Fig. 9) of the attracting set in the ( x , y ,  z )  space reveal 
two "lobes" (Fig. 9a) and a thickness in the third direction (Fig. 9b) that shows the set 
is not planar. 

Just as any initial point on a periodic orbit will eventually trace out the full 
orbit, so here any initial point on this strange attractor will follow a path in time 
that eventually traces out the full structure. Here, however, nearby initial points will 
diverge exponentially, reflecting the sensitive dependence on initial conditions. The 
two-lobed structure of the Lorenz attractor suggests a particularly useful analogy to 
emphasize this sensitivity. Choose two very nearby initial points and follow their 
evolution in time. Call each loop around the right lobe "heads" and around the left 
lobe "tails." Then the asymptotic sequences of heads and tails corresponding to the two 
points will be completely different and totally uncorrelated to each other. Of course, 
the nearer the initial points, the longer their motions will remain similar. But for any 
initial separation, there will be a finite time beyond which the motions appear totally 
different. 

In his original study Lorenz observed this sensitive dependence in an unexpected 
manner, but one quite consistent with research in experimental mathematics. His own 
words (from p. 55 of his article in Global Analysis) provide a dramatic statement of 
the observation: 

"During our computations we decided to examine one of the solutions in greater 
detail, and we chose some intermediate conditions which had been typed out by the 
computer and typed them in as new initial conditions. Upon returning to the com- 
puter an hour later, after it had simulated about two months of "weather," we found 
that it completely disagreed with the earlier solution. At first we expected machine 
trouble, which was not unusual, but we soon realized that the two solutions did not 
originate from identical conditions. The computations had been carried internally to 
about six decimal places, but the typed output contained only three, so that the new 
initial conditions consisted of old conditions plus small perturbations. These pertur- 
bations were amplifying quasi-exponentially, doubling in about four simulated days, 
so that after two months the solutions were going their separate ways." 

Notice that the doubling period of the small initial perturbation corresponds directly to 
the binary bit shift of the logistic map at r = 4. Again we see the exponential loss of 
information about the initial state leading to totally different long-time behavior. 

Let me now focus on the geometric figure that represents the strange attractor 
of the Lorenz equations. Figure 9 is, in fact, generated by plotting the coordinates 
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LORENZ ATTRACTOR 

Fig. 9. The attracting set of the Lorenz attrac- 

tor (Eq. 23 in the text with u = 10, r = 28, and 
b = 8/3) formed by joining 10,000 time steps 

of a single orbit into a smooth curve with the 
first 5000 points plotted in blue and the sec- 

ond 5000 plotted in green. (a)-(c) These per- 
spective views reveal the two-lobed, nonplanar 

shape and the thickness of the attractor. The 
red lines indicate the direction of the coordi- 
nate axes. (d) A closeup of the interleaving 
of the Lorenz orbit, which, even for an infinite 
time series of points, would never intersect 
and repeat itself. The attractor has a fractal 
dimension of 2.04, that is, between that of an 
area and a volume. (Figure courtesy of Gott- 

fried Mayer-Kress, Los Alarnos National Labo- 

ratory.) 

x(t), y(t), and z(t) at 10,000 time steps (after transients have died out) and joining 
the successive points with a smooth curve. The first 5000 points are colored blue, the 
second 5000 green. The apparent white parts of the figure are actually blue and green 
lines so closely adjacent that the photographic device cannot distinguish them. 

Notice how the blue and green lines interleave throughout the attractor and, in 
Fig. 9d, how this interleaving continues to occur on a finer scale. In fact, if the full 
attractor, generated by the infinite time series of points (x(t), (t), z (t)) , were plotted, 

we would see the trajectory looping around forever, never intersecting itself and hence 
never repeating. The exquisite filamentary structure would exist on all scales, and, even 
in the infinite time limit, the attractor would not form a solid volume in the ( x ,  y,  z )  

space. In a sense that we shall make precise shortly, the attractor is a fractal object with 
dimension between that of an area (dimension = 2) and that of a volume (dimension = 
3). Indeed, the Lorenz attractor has afiactal dimension of about 2.04. 

Fractals. The term fractal was coined by Benoit Mandelbrot in 1975 to describe 
irregular, fragmented shapes with intricate structure on all scales. Fractals moved 
into the mainstream of scientific research when it became clear that these seemingly 
exotic geometric objects, which had previously been viewed as "a gallery of monsters," 
were emerging commonly in many natural contexts and, in particular, as the attracting 
sets of chaotic dynamical systems. In fact, Mandelbrot traced many of the core 
concepts related to fractals back to a number of distinguished late 19th and early 20th 
century mathematicians, including Cantor, Hausdorff, and Julia. But, as in the case 
of deterministic chaos, the flowering of these concepts came only after experimental 
mathematics made precise visualization of the monsters possible. 
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The essential feature of fractals is the existence of similar, nontrivial structure on 
all scales, so that small details are reminiscent of the entire object. Technically, this 
property is known as scaling and leads to a theoretical approach that allows construction 
of fine details of the object from crude general features. The structure need not be 
exactly self-similar on all scales. Indeed, much current research focuses on self-offine 
fractals, in which the structures on different scales are related by linear transformations. 

One consequence of this scale invariance is that fractal objects in general have 

CANTOR SET 

fractional rather than integral dimension: that is, rather than being lines, areas, or 
volumes, fractals lie "somewhere in between." To understand this quantitatively, we 
recall the example of the recursively defined Cantor set (Fig, 10). At the zeroth level, 
the set consists of a continuous line segment from 0 to 1. At the first level, the middle 
third of the segment is eliminated. At the second level, the middle third of each of 
the two remaining continuous segments are eliminated. At the third level, the middle 
third of each of these four segments is eliminated, and so forth ad infiniturn. At each 
level the Cantor set becomes progressively less dense and more tenuous, so that the end 
product is indeed something between a point and a line. It is easy to see in Fig. 10 that 
at the nth level, the Cantor set consists of 2" segments, each of length (113)". Thus, 
the "length" 1 of the set as n goes to infinity would be 

In the 1920s the mathematician Hausdorff developed a theory that can be used to 
study the fractional dimension of fractals such as the Cantor set. In the present simple 
case, this theory can be paraphrased by asking how many small intervals, N(e), are 
required to "cover" the set at a length scale e. As e Ã‘ 0, the fractal dimension df is 
defined by 

Inverting Eq. 25, we see that 

Fig. 10. The Cantor set is formed by starting 
with a line segment of unit length, removing its 
middle third, and, at each successive level, re- 
moving the middle third of the remaining seg- 
ments. Although, the length of the remaining 
segments goes to zero as the number of iter- 
ations, or levels, goes to infinity, the set has 
a fractal dimension greater than zero, namely 
In 2/ In 3 w 0.6309. (Figure courtesy of Roger 
Eckhardt, Los Alamos National Laboratory.) 
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HAMILTONIAN 
CHAOS and 
STATISTICAL 
MECHANICS 
The specific examples of chaotic sys- 

tems discussed in the main text-the 10- 
gistic map, the damped, driven pendu- 
lum, and the Lorenz equations-are all 
dissipative. It is important to recognize 
that nondissipative Hamiltonian systems 
can also exhibit chaos; indeed, Poincar6 
made his prescient statement concerning 
sensitive dependence on initial conditions 
in the context of the few-body Hamil- 
tonian problems he was studying. Here 
we examine briefly the many subtleties 
of Hamiltonian chaos and, as an illustra- 
tion of its importance, discuss how it is 
closely tied to long-standing problems in 
the foundations of statistical mechanics. 

We choose to introduce Hamiltonian 
chaos in one of its simplest incarnations, 
a two-dimensional discrete model called 
the standard map. Since this map pre- 
serves phase-space volume (actually area 
because there are only two dimensions) 
it indeed corresponds to a discrete ver- 
sion of a Hamiltonian system. Like the 
discrete logistic map for dissipative sys- 
tems, this map represents an archetype for 
Hamiltonian chaos. 

The equations defining the standard 
map are 

where, as the notation suggests, pn is the 
discrete analogue of the momentum, qn 
is the analogue of the coordinate, and 
the discrete index n plays the role of 
time. Only the fractional parts of p,, and 
qn are kept; hence the motion is on a 
torus, periodic in both p and q .  For any 
value of k ,  the map preserves the area 
in the (p,q) plane, since the Jacobian 
a(Pn+l, qn+~)/a(Pn, qn) = 1. 

The preservation of phase-space vol- 
ume for Hamiltonian systems has the very 
important consequence that there can be 
no attractors, that is, no subregions of 
lower phase-space dimension to which 
the motion is confined asymptotically. 
Any initial point (po, qo) will lie on some 
particular orbit, and the image of all 
possible initial points-that is, the unit 
square itself-is again the unit square. In 
contrast, dissipative systems have phase- 
space volumes that shrink. For example, 
the logistic map (Fig. 5 in the main text) 
at A = 3.1 has all initial points in the in- 
terval (0 , l )  attracted to just two points. 

Clearly, for k = 0 the standard map 
is trivially integrable, with pn = po be- 
ing constant and qn increasing linearly in 
time (n) as it should for free motion. The 
orbits are thus just straight lines wrap- 
ping around the toms in the q direction. 
For k = 1.1 the map produces the orbits 

shown in Figs. la-d. The most immedi- 
ately striking feature of this set of figures 
is the existence of nontrivial structure on 
all scales. Thus, like dissipative systems, 
Hamiltonian chaos generates strange frac- 
tal sets (albeit "fat" fractals, as discussed 
below). On all scales one observes "is- 
lands," analogues in this discrete case of 
the periodic orbits in the phase plane of 
the simple pendulum (Fig. 2 in the main 
text). In addition, however, and again on 
all scales, there are swarms of dots com- 
ing from individual chaotic orbits that un- 
dergo nonperiodic motion and eventually 
fill a finite region in phase space. In these 
chaotic regions the motion is "sensitively 
dependent on initial conditions." 

Figure 2 shows, in the full phase space, 
a plot of a single chaotic orbit followed 
through 100 million iterations (again, for 
k = 1 .I). This object differs from the 
strange sets seen in dissipative systems in 
that it occupies a finite fraction of the full 
phase space: specifically, the orbit shown 
takes up 56 per cent of the unit area that 
represents the full phase space of the map. 
Hence the "dimension" of the orbit is the 
same as that of the full phase space, and 
calculating the fractal dimension by the 
standard method gives df = 2. How- 
ever, the orbit differs from a conventional 
area in that it contains holes on all scales. 
As a consequence, the measured value of 
the area occupied by the orbit depends 
on the resolution with which this area is 
measured-for example, the size of the 
boxes in the box-counting method-and 
the approach to the finite value at in- 
finitely fine resolution has definite scaling 
properties. This set is thus appropriately 
called a "fat fractal." For our later dis- 
cussion it is important to note that the 
holes-representing periodic, nonchaotic 
motion-also occupy a finite fraction of 
the phase space. 

To develop a more intuitive feel for fat 
fractals, note that a very simple exam- 
ple can be constructed by using a slight 
modification of the Cantor-set technique 
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region magnified in (b). and so forth. Nontrivial 
structure, includina "Islands" and swarms of - 
dots that represent regions of chaotic, nonpe- 
riodic motion, are obvious on all scales. (Fig- 
lire courtesy of James Kadtke and David Urn- 
barger, Los Alamos National Laboratory.) 
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described in the main text. Instead of 
deleting the middle one-third of each in- 
terval at every scale, one deletes the mid- 
dle (113)" at level n. Although the re- 
sulting set is topologically the same as 
the original Cantor set, a calculation of 
its dimension yields df = 1; it has the 
same dimension as the full unit interval. 
Further, this fat Cantor set occupies a fi- 
nite fraction-amusingly but accidentally 
also about 56 per c e n t ~ o f  the unit inter- 
val, with the remainder occupied by the 
"holes" in the set. 

To what extent does chaos exist in the 
more conventional Hamiltonian systems 
described by differential equations? A 
full answer to this question would require 
a highly technical summary of more than 
eight decades of investigations by math- 
ematical physicists. Thus we will have 
to be content with a superficial overview 
that captures, at best, the flavor of these 
investigations. 

To begin, we note that completely in- 
tegrable systems can never exhibit chaos, 
independent of the number of degrees of 
freedom N. In these systems all bounded 
motions are quasiperiodic and occur on 
hypertori, with the N frequencies (pos- 
sibly all distinct) determined by the val- 
ues of the conservation laws. Thus there 
cannot be any aperiodic motion. Fur- 
ther, since all Hamiltonian systems with 
N = 1 are completely integrable, chaos 
cannot occur for one-degree-of-freedom 
problems. 

For N = 2, non-integrable systems can 
exhibit chaos; however, it is not trivial 
to determine in which systems chaos can 
occur; that is7 it is in general not obvi- 
ous whether a given system is integrable 
or not. Consider, for example, two very 
similar N = 2 nonlinear Hamiltonian sys- 
tems with equation of motion given by: 

d2x 
dt2 
= - x - 2 x y ,  

d2y 
(2) 

2 2 
= -Y + Y  -x  , 

anu 
d2x - -  
dt2 

- -x - 2xy, 

d^y =-y - y  2 - x  2 

dt2 

Equation 2 describes the famous Henon- 
Heiles system, which is non-integrable 
and has become a classic example of a 
simple (astro-) physically relevant Hamil- 
tonian system exhibiting chaos. On the 
other hand, Eq. 3 can be separated into 
two independent N = 1 systems (by a 
change of variables to C = x - y and 
Q = x + y) and hence is completely in- 
tegrable. 

Although there exist explicit calcula- 
tional methods for testing for integrabil- 
ity, these are highly technical and gener- 
ally difficult to apply for large N.  For- 
tunately, two theorems provide general 
guidance. First, Siegel's Theorem con- 
siders the space of Hamiltonians analytic 
in their variables: non-integrable Hamil- 
tonians are dense in this space, whereas 
integrable Hamiltonians are not. Sec- 
ond, Nekhoroshev's Theorem leads to the 
fact that all non-integrable systems have a 
phase space that contains chaotic regions. 

Our observations concerning the stan- 
dard map immediately suggest an essen- 
tial question: What is the extent of the 
chaotic regions and can they, under some 
circumstances, cover the whole phase 
space? The best way to answer this ques- 
tion is to search for nonchaotic regions. 
Consider, for example, a completely inte- 
grable N -degree-of-freedom Hamiltonian 
system disturbed by a generic non-inte- 
grable perturbation. The famous KAM 
(for Kolmogorov, Arnold, and Moser) 
theorem shows that, for this case, there 
are regions of finite measure in phase 
space that retain the smoothness associ- 
ated with motion on the hypertori of the 
integrable system. These regions are the 
analogues of the "holes" in the standard 
map. Hence, for a typical Hamiltonian 
system with N degrees of freedom, the 

chaotic regions do not fill all of phase 
space: a finite fraction is occupied by "in- 
variant KAM tori." 

At a conceptual level, then, the KAM 
theorem explains the nonchaotic behav- 
ior and recurrences that so puzzled Fermi, 
Pasta, and Ulam (see "The Fermi, Pasta, 
and Ulam Problem: Excerpts from 'Stud- 
ies of Nonlinear Problems' "). Although 
the FPU chain had many (64) nonlinearly 
coupled degrees of freedom, it was close 
enough (for the parameter ranges studied) 
to an integrable system that the invariant 
KAM tori and resulting pseudo-integrable 
properties dominated the behavior over 
the times of measurement. 

There is yet another level of subtlety 
to chaos in Hamiltonian systems: namely, 
the structure of the phase space. For non- 
integrable systems, within every regular 
KAM region there are chaotic regions. 
Within these chaotic regions there are, in 
turn, regular regions, and so forth. For 
all non-integrable systems with N > 3, 
an orbit can move (albeit on very long 
time scales) among the various chaotic 
regions via a process known as "Arnold 
diffusion." Thus, in general, phase space 
is permeated by an Arnold web that links 
together the chaotic regions on all scales. 

Intuitively, these observations concem- 
ing Hamiltonian chaos hint strongly at a 
connection to statistical mechanics. As 
Pig. 1 illustrates, the chaotic orbits in 
Hamiltonian systems form very compli- 
cated "Cantor dusts," which are nonperi- 
odic, never-repeating motions that wan- 
der through volumes of the phase space, 
apparently constrained only by conser- 
vation of total energy. In addition, in 
these regions the sensitive dependence 
implies a rapid loss of information about 
the initial conditions and hence an effec- 
tive irreversibility of the motion. Clearly, 
such wandering motion and effective ir- 
reversibility suggest a possible approach 
to the following fundamental question of 
statistical mechanics: How can one de- 
rive the irreversible, ergodic, thermal- 
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have that the er- 

A Complicated Problem of 
and Physics,") 

variety of physicdl 

Â How does the measure of phase space 
occupied by KAM tori depend on Nt 
Is there a class of models with realistic 
interactions for which this measure 
to O? there non-integrable models 
for which a finite measure is 

A "FAT" FRACTAL 

Fig. 2. A single chaotic orbit of the standard 
map for k = 1 . l .  The picture was made by di- 
viding the energy surface into a 512 by 512 grid 
and iterating the initial condition 1 0  times. 
The squares visited by this orbit are shown 
in black. Gaps in the phase space represent 
portions of the energy surface unavailable to 
the chaotic orbit because of various quasiperi- 
odic orbits confined to tori, as seen in Fig. 1. 
(Figure courtesy of J. Doyne Farmer and David 
Urnberger, Los Alamos National Laboratory.) 
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continued from page 241 

For the Cantor set, if we look at the nth level and use the small interval of length 
e = (1 /3)", we know that N(e) = 1". Since as n -+ oo, e -+ 0, we can use 

In N (e) 11-12" In2 - d f - E - o (  - lim - ln; ) = n + ~ l n 3 ~  lim - - z' 

The simple Cantor set has, in effect, only a single scale because the factor of 113 
is always used in constructing successive levels of the set. In contrast, fractals that arise 
in chaotic dynamical systems have a range of scales and, typically, different scalings 
apply to different parts of the set; as a consequence, these more complex sets are 
sometimes termed multifractals. In his original work on the logistic map, Feigenbaum 
defined and discussed a scaling function that characterized these differences. Recently, 
a related analytic technique~called the f (a )  approach-has been used to provide a 
detailed understanding of the many different scalings occurring in a variety of chaotic 
dynamical systems. 

Although these constructions and techniques may seem to be just mathematical 
manipulations, nature abounds with structures that repeat themselves on many differ- 
ent scales and hence have approximate fractal structure. Familiar examples include 
clouds, lightning bolts, ferns, and, as shown in Fig. 11, snowflakes. Less familiar but 
technologically significant examples include the growth of dendritic crystals, dielectric 
breakdown in gas-filled cells, and "viscous fingering" in certain two-fluid flows. 

A laboratory experiment illustrating this last phenomenon (Fig. 12) consists of 
a flat, effectively two-dimensional, cylindrical cell containing a high-viscosity fluid. 
An inlet in the center of the cell permits the injection under pressure of a second, 
less viscous fluid (in this case, water). Instead of smoothly and uniformly replacing the 
viscous fluid in the cell, the water splits into the highly branched, coral-like fractal object 
shown in Fig. 12. Using a box-counting technique similar to that used to measure the 
dimension of the Cantor set, one finds that the fractal dimension of the viscous finger 
is 1.70 Â 0.05. Hence, although it is composed of many thin but highly branched 
segments, the viscous finger possesses a fractional dimension closer to that of an area 
(d = 2) than that of a line (d = 1). 

To understand the processes that create such structures, one can use experimental 
mathematics to study specific physical models. One such study (Fig. 13) depicts the 
development of a fractal pattern on a triangular lattice. The model underlying the 
pattern depends primarily on the local pressure gradients driving the "fluid," but it also 
incorporates the effects of fluctuations (via a noise parameter) and of anisotropy. The 
study shows clearly that all the patterns grow primarily at the tips; almost no growth 
occurs in the "fjord" regions. 

Figures 13a and 13b are examples of the fractal structures found when the noise 
parameter is held constant but the anisotropy k is considerably decreased. Notice the 
striking qualitative similarity between Figs. 11 and 13a. Interestingly, the fractal 
dimension of both Figs. 13a and 13b is about 1.5; it is independent of k.  In Figs, 13c and 
13d the anisotropy is held fixed but the noise is decreased. Here the fractal dimension 
of both is about 1.7. 

Figure 13 makes clear that df alone is not sufficient to characterize a fractal, for 
although both Figs. 13a and 13b have df = 1.5, there are obvious visual differences. 
Mandelbrot has defined a number of higher order geometric properties-for example, 
l a m r i t y ,  a measure of the typical size of the holes in the fractal-that can be used 
to characterize fractals more precisely. Lacunarity and other higher-order features are, 
in effect, geometric restatements of our earlier remarks that multifractals generated by 
chaotic dynamical systems have a range of scalings and that f (a) and related analytic 
techniques can be used to study these scalings. A generally unsolved challenge in this 
area is the fractal inverse problem: given f (a)  or related quantities, to what extent can 
one reconstruct the actual fractal set, including perhaps the order in which the points 
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of the set are generated dynamically? 

Practicalities. The impacts of deterministic chaos and fractals are only now beginning 
to be felt throughout science. The concepts that even simple systems can exhibit 
incredibly complicated behavior, that simple rules can lead to enormously intricate 
geometric objects, and that this behavior and these objects can be quantified are now 
all widely appreciated and are being applied in many fields. 

The fractal viscous-fingering phenomenon (Fig. 12) is of enormous technological 
interest, for it represents a major barrier to the development of efficient advanced oil- 
recovery techniques. Nearly half the oil deposited in limestone or other porous media pig  ll. The snowflake is an example of a 
is typically unrecovered because it remains stuck in the pores. To force out this oil, fractal structure in nature. (photos reprinted 
water is injected into a second well nearby. Viscous fingering limits the effectiveness of from Snow Crystals by W. A. Bentley and W. 

this technique, because when one of the thin fingers of water breaks through from the J- Humpreys with Permission of Dover Publi- 

injector to the recovery well, only injected water rather than oil is thereafter recovered. cations.) 

Clearly a full understanding of this fractal phenomenon and ways to control it are of 
considerable economic importance. 

Similarly, a direct application of fractals occurs in the design of the toughened 
ceramics used as engine parts. These special ceramics are designed to tolerate flaws, 
such as voids and cracks, without breaking into pieces. The flaws arise primarily from 
voids that develop during the sintering process and fractures that arise chiefly from the 
use of hard materials when machining the ceramics. By adding secondary constituents 
to the ceramics, propagating cracks can be forced to move through the ceramic along 
tortuous, convoluted routes, causing more energy to be expended than if the route were 
smooth and regular. Hence, for a given impulse, an irregular crack does not propagate 
as far through the ceramic and does less overall damage. Convoluted routes should 

VISCOUS FINGERING 

lead to cracks in the form of complex fractal patterns. Indeed, microscopic studies of Fig. 12. A fractal structure formed by inject- 

high performance ceramics have revealed such patterns and established that the higher ing water under pressure into a high-viscosity 

the fractal dimension of the cracks, the tousher the ceramics. fluid. The fractal dimension of this object .. 
The results of deterministic chaos are also being applied across a broad range of has been calculated be df = * 0'05' 

(Figure courtesy of Gerard Daccord and Jo- 
disciplines. Experimentally, high-precision measurements of chaotic dynamics in many 

harm Nittmann, Etudes et Fabrication 
types of fluid flows, current and voltage responses of semiconductors and other solid- Schlumberger, France, and ,,. Eugene Stanley, 
state electronic devices, and cardiac arhythymias have established the importance of Boston University.) 
dissipative chaos in fluid dynamics, condensed-matter physics, and medicine. Indeed, 
recent medical experiments have suggested that many physiological parameters vary 
chaotically in the healthy individual and that greater regularity can indicate a patho- 
logical condition; for example, normally chaotic oscillations of the densities of red and 
white blood cells become periodic in some anemias and leukemias. Hamiltonian chaos 
finds a direct application in accelerator design, where the potential loss of an appar- 
ently stable beam due to subtle long-time phenomena such as "Arnold diffusion" (see 
"Hamiltonian Chaos and Statistical Mechanics") is a vital issue of technology. 

The central theoretical challenge in "applied chaos" is to develop deterministic 
chaotic models to explain these diverse phenomena. Rather than focusing on the details 
of specific applications, let me describe two broader problem areas of current research. 

First, although we have stressed the randomness and unpredictability of the long- 
time behavior of chaotic systems, it nonetheless remains true that these systems are 
deterministic, following laws that involve no external randomness or uncertainty. Thus, 
it is possible to predict the behavior for short times, if the equations of motion are 
known. The analytic solution of the logistic map for r = 4 is a clear illustration; 
given two initial conditions known to, say, 10-bit accuracy, one can predict the relative 
positions-albeit with exponentially decreasing accuracy-for 10 iterations of the map. 
The subtler problem, currently under intense investigation, occurs when one observes 
that a system is deterministically chaotic but does not know the form of the underlying 
equations: can one nonetheless use the basic determinism to make some prediction? 
In view of the clear value of such predictive techniques-consider the stock market- 
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substantial efforts are being focused on this question. 
Second, and at a still broader level, are the related issues of universality and mode 

reduction in chaos, both of which we mentioned previously. Universality implies that 
for certain chaotic phenomena-such as the period-doubling cascade-the details of the 
system and the equations describing it are irrelevant: the observed complex behavior 
develops in a similar manner in every context, be it fluid dynamics, condensed-matter 
physics, or biology. Indeed, the term universality is borrowed from the statistical me- 

A FRACTAL SIMULATION 

Fig. 13. The model used in the simulation to 
form these fractal patterns uses local pressure 
gradients to "drive the fluid" across a trian- 
gular lattice. The growth patterns of the ob- 
jects are indicated by the color coding; the first 
one-sixth of the sites to be occupied are white, 
the next one-sixth blue, then magenta, yellow, 
green, and finally red. The model also incorpo- 
rates the effects of fluctuations via the noise 
parameter u and of anisotropy via the param- 
eter k. The patterns in (a) and (b) have the 
same noise (o- = 0.02) but different anisotropy 
(k = 11 in (a) and k = 1.3 in (b)). The patterns 
in (c) and (d) have the same isotropy (k = 1) 
but the noise changes (from u = 0.5 in (c) 
to u = 0.005 in (d)). (Photos courtesy of Jo- 
hann Nittmann, Etudes et Fabrication Dowell 
Schlumberger, France, and H. Eugene Stanley, 
Boston University.) 

chanics of phase transitions, where it has been shown that the details of the microscopic 
interactions are irrelevant for most of the important properties of the transitions. In the 
context of chaos, universality also lends tremendous power to analyses of certain phe- 
nomena; in essence, the simplest example-for instance, the logistic map for period 
doubling~contains the critical features of the entire effect. 

The central idea of mode reduction can most easily be visualized in fluid flows. 
In any given fluid motion not all the (infinitely!) many possible modes are "active," 
so the effective phase-space dimension is much smaller than the full dimension of the 
equations. The case of laminar flow in which fluid moves en bloc is a trivial illustration. 
A more interesting and much less obvious example is observed in experiments on 
Couette-Taylor flows, in which fluid is contained between two concentric rotating 
cylinders. As the speed of relative rotation is increased, the flow forms bands of 
Taylor vortices. Further increases in the relative rotation causes the bands to develop 
"wobbling" instabilites and finally to be replaced by fully developed turbulence. In 
these experiments clever techniques (sometimes referred to as "geometry from a time 
series" and related to rigorous mathematical embedding theorems) have been used to 
extract phase-space information directly from a time series of measurements on a single 
dynamical variable. Such techniques have revealed strange attractors with effective 
phase-space dimensions on the order of five. In such experiments there are, in one 
sense, on the order of only five active modes. Mode reduction reduces the number of 
degrees of freedom being modeled to the minimum necessary to capture the essence of 
the motion. 

Several important aspects of the general problem of mode reduction should be 
clarified. First, techniques such as "geometry from a time series" offer no immediate 
information about the nature of the reduced modes nor about the effective equations 
governing their interactions. In general, obtaining such information remains an impor- 
tant open problem. 

Second, mode reduction is distinct from mode truncation. Specifically, we noted 
that the Lorenz equations were obtained by simply truncating the Fourier expansion 
of the full equations, hence ignoring certain demonstrably nonzero couplings. Ideally, 
the process of mode reduction should be deductive, controlled, and constuctive; that is, 
one should be able to derive the equations governing the reduced modes, to bound the 
error made in the reduction, and to "construct" the actual modes themselves. This, too, 
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remains an elusive goal, despite substantial recent progress. 
Third, if one is able to obtain a true mode reduction, the benefits are substantial. 

For instance, the parameters of the mode-reduced equations can easily be forced in 
a time-dependent manner, and the reduced equations themselves can be damped and 
driven. In this manner it may be possible to predict the behavior of the full original 
system, where the effects of such forcing may be difficult to determine. A specific 
instance of this technique has been carried out recently by Rabinowitz in the Soviet 

Union: using numerical experiments on mode-reduced equations as a guide, he was 
able to forestall the onset of turbulence in a nozzle flow by applying a periodic stress. 

Fourth, rigorous mathematical results on mode reduction have been obtained for a 
class of nonlinear reaction-diffusion equations that describe unstable chemical reacting 
fronts, such as flames. One important example is the so-called Kuramoto-Sivashinsky 
equation, which can be written in the form 

where 4(x, t) is the amplitude, as a function of position and time, of the phenomenon 
being described. Although this equation represents, in dynamical-systems parlance, 
an infinite-degree-of-freedom system, it is nonetheless rigorously true that in a box of 
finite length L a finite number of modes proportional to L are sufficient to capture the 
long-time dynamics arising from essentially any initial condition. Although the link 
is not yet fully constructive, the nature of these modes can be determined, and they 
are related to coherent structures observed for this equation. This general connection 
between mode reduction in chaotic systems and coherent structures in spatially extended 
dynamical systems will be a central issue in our discussion of complex configurations 
and pattern selection. 

Finally, the problem of mode reduction lies at the core of attempts to understand the 
relation between chaos and fully developed turbulence in fluids and plasmas. Chaos, as 
we have stressed, involves temporal disorder and unpredictability in dynamical systems 
with low effective phase-space dimension. Fully developed turbulence, in addition to 
the temporal disorder, involves disordered, random spatial structure on all scales (at least 
apparently). Further, different spatial regions of the turbulent system act independently, 
and spatial correlation functions are short-ranged. Thus the phase-space dimension of 
any attractor in fully developed turbulence appears, a priori, very high. 

For example, a recent numerical simulation of turbulent Poiseuille flow at a 
Reynolds number of 2800 suggests that the turbulent solutions to the Navier-Stokes 
equations for the flow do lie on a strange attractor, but one that has fractal dimension 
of about 400! Although it is comforting to know that the turbulence observed in this 
case can be described qualitatively by deterministic chaos, it is obviously disconcerting 
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to contemplate trying either to analyze such flows experimentally or to model them 
theoretically in terms of a dynamical system with a 400-dimensional phase space. For 
higher Reynolds numbers this situation will become even worse. In the next section we 
will illustrate how mode reduction, coupled with a hierarchy of approximate equations, 
may make this situation more tractable. 

In sum, the remarkable insights of the past twenty-five years have led to the 
emergence of deterministic chaos and fractals as a second central paradigm of nonlinear 
science. The impact of this paradigm on our basic view of complexity in the world, as 
well as on technologies affecting our daily lives, will continue to be profound for the 
foreseeable future. 

Complex Configurations and Patterns 

When a spatially extended nonlinear system is driven far from equilibrium, the 
many localized coherent structures that typically arise can organize themselves into a 
bewildering array of spatial patterns, regular or random. Perhaps the most familiar 
example is turbulent fluid flow, in which the temporal behavior is chaotic yet one fre- 
quently observes patterns of coherent structures: recall the complex configuration of 
vortices surrounding the Red Spot in Fig. 3a. The process of pattern formation and 
selection occurs throughout nature, in nonlinear phenomena ranging from electromag- 
netic waves in the ionosphere through mesocale textures in metallurgy to markings on 
seashells and stripes on tigers. Thus, complex configurations and patterns represents a 
third paradigm of nonlinear science. Although somewhat less developed than solitons 
or chaos, the paradigm already promises to provide the basis for a unified understanding 
of nonlinear phenomena in many fields. 

Our previous discussion of dynamical systems provides a useful conceptual frame- 
work in which to approach the general problem of patterns. A typical extended nonlin- 
ear, nonequilibrium system will have many possible configurations or patterns; some of 
these will be stable, others unstable, and the vast majority metastable. Highly symmet- 
ric patterns may be accessible analytically, but general, anisotropic configurations must 
first be studied via experimental mathematics. In dissipative extended systems these 
patterns are loosely analogous to the attractors of simple dynamical systems-with the 
important proviso that they do not correspond to true asymptotic attractors because most 
are, in fact, merely metastable. Nonetheless, the multiple-attractor analogy correctly 
suggests that an extended nonlinear system has many basins of temporary attraction. In 
view of our results on the damped, driven pendulum, we expect the basin boundaries 
to be complicated, perhaps fractal, objects. As a result, the study of the dynamics of 
complex configurations and of the sequence of patterns explored, as well as of the pat- 
tern ultimately selected (if any), represents one of the most daunting challenges facing 
nonlinear science. 

At present this challenge is still being confronted primarily at the experimental 
level, both in actual physical systems and via numerical simulations, rather than analyt- 
ically. Hence we rely here chiefly on visual results from these experiments to indicate 
important aspects of the paradigm. 

Experiments and Numerical Simulations. Consider, as a first illustration, a gener- 
alization of a familiar example: the sine-Gordon equation, only now damped, driven, 
and with two spatial dimensions. This equation, which models certain planar magnetic 
materials and large-area Josephson junction arrays, has the form 

We can anticipate from our earlier discussion that this model will contain coherent 
structures (although not solitons, because the two-dimensional sine-Gordon equation is 
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not completely integrable). We can also expect the model to contain chaos because of 
the driving and damping forces. 

Four snapshots of the temporal development of the system are shown in Fig. 14 
for a = 0.1, r = 1.6, and w = 0.6. Although it may seem obvious, the use of color 
coding as a means of enhancing the visual interpretation should be mentioned; color 
graphics, especially in a high-speed, interactive mode, are not a frivolous luxury but, 
in fact, are among the most powerful tools of experimental mathematics. Here, for 

example, the color indicates the approximate value of 6. The initial annular structure 
of this system (Fig. 14a) eventually forms other patterns that are, in fact, oscillatory 
in time. Because the boundary conditions are periodic in both x and y ,  the system 
retains a high degree of symmetry as it evolves into four structures in a two-by-two 
pattern (Fig. 14b). Eventually, however, a "smearing" is detected parallel to the x axis 
(Fig. 14c) that leads to the striped configuration of Fig. 14d. No further qualitative 
change occurs after that. 

Because of the original symmetry of the problem, the emergence of a final pattern 
striped in the x direction rather than the y direction must depend on a slight asymmetry 
external to the equations themselves. Possibilities are a slight difference in the initial 
conditions for x and y due to computer round-off or an asymmetry in the solution 
algorithm. Such asymmetries can be viewed as external noise that leads to a config- 
uration that breaks the symmetry of the equations. The extreme sensitivity of certain 
pattern selection processes to external noise and to minor asymmetries has already been 
indicated in the fractal growth models of Fig. 13 and is observed experimentally in a 
wide variety of contexts, including the growth of dendrites such as the snowflakes of 
Fig. 11. 

SINE-GORDON EQUATION FOR 
TWO SPATIAL DIMENSIONS 

Fig. 14. Four snapshots of the temporal behav- 

ior of the two-dimensional sine-Gordon equa- 
tion. Red indicates values of 0 near 2 - ~ ,  blue 
indicates values near 0, and colors in the spec- 
trum between red and blue indicate intermedi- 
ate values. (a) The initial structure is annu- 
lar. (b) After a time equal to approximately 

100 units of the fundamental oscillation fre- 
quency of the system, the initial ring breaks 

into a symmetric, two-by-two pattern of four 
structures. (c) This last pattern is metastable 
and gradually slides off center, leading, at t - 
200, to a pattern that is clearly beginning to 
"smear" in the x-direction. (d) Eventually, for 

t - 300, the smearing has led to a striped, 
stable configuration. The parameters used in 
Eq. 29 to generate these pictures are ec = 0.1, 

r = 1.6, and u = 0.6. (Figures courtesy of 
Peter Lomdahl, Los Alamos National Labora- 

tory.) 
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RAYLEIGH-BERNARD 
CONVECTION PATTERNS 

Fig. 15. Patterns of convection-roll stream- 
ing are created here using shadowgraph tech- 
niques in an experiment in which silicone oil is 
heated from below. The dark lines correspond 
to ascending streams of fluid, the bright lines 
to descending streams. (Photos courtesy of 
Pierre Berge, Commissariat a ~ ' ~ n e r g i e  Atom- 
ique, France.) 

The emergence and evolution of configurations related to those seen in the numer- 
ical simulations has been the focus of many recent experiments involving Rayleigh- 
Benard convection. By using shadowgraph techniques that clearly distinguish ascending 
and descending streams of fluid, convection-roll structures are observed in silicone oil 
heated from below (Figs. 15 and 16). The asymmetric pattern of Fig. 15a is typi- 
cal of configurations that last for only a few minutes. On the other hand, the more 
symmetric pattern of Fig. 15b is more stable, maintaining its form for ten minutes or 

AN AVERAGE 
CONVECTION PATTERN 

Fig. 16. The first two of these Rayleigh-Ber- 
nard convection patterns (a and b) are snap- 
shots of the flow in the silicone oil experiment. 
whereas (c) is a sum of ten such instantaneous 
pictures. (Photos courtesy of Pierre Bergb, 
Commissariat a L'Energie Atomique, France.) 

more. Although one does not have a detailed understanding of the phenomenon, clearly 
boundary effects are causing the system to "pin" itself to these more stable configura- 
tions. Figure 16 demonstrates that a mean structure, or average pattern, can exist in 
such flows. The first two images (Figs. 16a and b) are snapshots of the flow, whereas 
the third (Fig. 16c) is a sum of ten such instantaneous pictures and clearly indicates the 
presence of a highly symmetrical average configuration. 

Fluid dynamics abounds with other examples of complex configurations and pattern 
formation. Particularly relevant in technological applications is shear instability, which 
occurs when a fluid moves rapidly past a fixed boundary or when two fluids move past 
each other at different velocities. The performance and fuel-efficiency of aircraft, for 
example, are strongly affected by the turbulent boundary layer formed as a consequence 
of shear instabilities. 

Figure 17 is a sequence of images of the "Kelvin-Helmholtz" shear instability 
simulated using the two-dimensional Euler equations that model compressible but 
inviscid fluid flow. (Strictly speaking, because the study does not resolve the thin 
turbulent boundary layer, it is technically a "slip-surface" instability.) The study reveals 
an incredible wealth of information, only some of which we will discuss here. Two 
streams of identical fluid flow past each other, both moving at the speed of sound. 
Initially, a small sinusoidal perturbation is given to the vertical velocity component of 
the flow at the boundary between the layers, and the resulting entrainment and roll-up 
phenomena that lead to the mixing of the two fluids is followed. 
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Shortly after the simulation starts, the roll-up of the boundary has already begun to 
generate coherent structures (Fig. 17a). These grow (actually, in a self-similar manner) 
until the periodic boundary conditions in the x direction cause the structures to interact 
(note the four vortex-like structures in Fig. 17b). In addition, sudden jumps in the 
intensity of the colors in the top and bottom regions reveal the presence of shock 
waves. The four vortices merge into two (Fig.17~) and thereafter entrain, forming 
a bound vortex pair (Fig. 17d). The roll-up phenomenon creates incredibly complex 

SHEAR INSTABILITY 

(fractal) structure from the initially smooth boundary. Thus, we see in Fig. 17 precisely 
the interplay between large-scale coherent structures and chaotic, fractal dynamics 
that typifies complex configurations in extended nonlinear systems. Further, although 
different in detail, Fig. 17d clearly resembles in outline the more familiar shape of 
Fig. 3a; art-in this case, computer art-is indeed imitating Nature. 

One feature common to all our previous examples is the limited number of 
coherent structures that participate in the observed patterns of the system. In each 
case, this limitation arises from the small size (relative to the scale of the coherent 
structures themselves) of the "box7'-be it computational or physical-in which the 
pattern-forming system is contained. 

An example in which this constraint is relaxed is a numerical simulation, carried 
out at Los Alarnos a decade ago by Fred Tappert, of the self-focusing instability that 
arises in the interaction of an intense laser beam with a plasma (Fig. 18). The instability 
is closely related conceptually to the mechanism by which solitons are formed in optical 
fibers and reflects an important difficulty in attempts to develop inertial confinement 
fusion. On a much different scale, this phenomenon leads to significant electromagnetic 
disturbances in the ionosphere. 

Fig. 17. Two streams of identical fluid flow 
past each other with the top stream (colored 
green to blue) moving to the right at Mach 1 

(the speed of sound) and the bottom stream 
(colored red to purple) moving to the left also 
at Mach 1. The boundary between layers is a 
yellow line, and, initially, a small vertical sinu- 
soidal velocity perturbation is applied at this 
boundary with the colors indicating the initial 
y value of a given bit of fluid. The series show 
the roll-up of the boundary (a) and the develop- 
ment of coherent structures in the form of vor- 
tices. By (d), a bound vortex pair has formed. 
(Figures made at Lawrence Livermore National 
Laboratory by Paul Woodward, University of 
Minnesota, and David Helder.) 
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The particular equation used in the simulation is a two-space-dimension variant of 
the nonlinear Schrodinger equation (Eq. 12). Here the equation has the specific form 

where E = E(x, y ,  t )  is the electric field envelope function. For small IE 12, the equation 
contains an effective cubic nonlinearity and thus becomes the direct two-dimensional 

CAVITONS: 
SELF-FOCUSING INSTABILITIES 

Fig. 18. The development of a self-focusing 

instability in a laser beam passing through a 

plasma. These frames, taken from a computer- 

generated movie, show both a contour plot 

(upper left) and a projected plot of the laser 

intensity across the profile of the beam. (a) 
Initially, the beam is essentially uniform with 

a small amount of random spatial "noise," but 

as it moves into the plasma, the self-focusing 

instability generates filaments of high intensity 

that (b) grow dramatically as the beam pro- 

gresses further. (Photos made at Los Alamos 

by Fred Tappert, University of Miami.) 

generalization of Eq. 12. As E approaches infinity, the nonlinearity saturates, and 
Eq. 30 becomes effectively linear. 

From a random initial condition of spatial white noise (Fig. 18a), a complex 
configuration involving a large number of coherent structures develops (Fig. 18b). 
Having observed these complex patterns involving many coherent structures, Tappert 
went on to isolate the individual coherent structures-now known as cavitons-and to 
study their interactions numerically. Since the dynamics can not be properly appreciated 
without showing the time evolution, I will not attempt to describe it here; however, 
this study is an excellent example of using experimental mathematics to unravel the 
role that analytically inaccessible coherent structures play in the formation of complex 
configurations. 

Analytic Developments. Our brief pictorial survey of numerical and experimental 
studies of pattern formation should make clear the daunting nature of the general 
problem. Thus it is hardly surprising that current analytic approaches focus on special 
and isolated instances of pattern formation that reduce the problem to a more tractable 
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form. Although much remains to be done, this "divide and conquer" philosophy has 
recently demonstrated such substantial promise that, in the next decade, we should 
witness a revolution for patterns comparable to those for solitons and chaos. 

One line of analytic attack is to start with a system that has exact solitons-the 
one-dimensional sine-Gordon or nonlinear Schrodinger equations, for example. One 
then perturbs the system with driving and damping forces and studies the patterns 
that emerge from the evolution of the analytically known coherent structures under 
the influence of the chaotic dynamics. This approach has been used extensively in 
the case of the damped, driven sine-Gordon equation, and a very rich phenomenology 
has developed. However, detailed quantitative understanding, even in the case of a 
perturbed integrable system, can only be produced at present if the purely analytic 
approach is guided and supplemented by numerical simulations. 

To describe other semi-analytic approaches, let me focus on pattern formation in 
fluid flows. I shall discuss three related techniques that derive approximate or effective 
equations appropriate to specific situations called the amplitude-, phase-, and prototype- 
equation techniques. 

As previously observed, a nonlinear system often exhibits bifurcations or sharp 
transitions in the qualitative behavior of its solutions as a function of one of its 
parameters. The Rayleigh-Benard instability in a fluid heated from below is one such 
case (Figs. 15 and 16). When the rate of heating is less than a certain threshold, the 
fluid simply conducts the heat from the hot bottom to the cooler top, in effect acting 
like a solid object. At a critical value of the heating rate, this conducting state becomes 
unstable and convection-the familiar rolling motion that can be seen in boiling water- 
sets in. This transition is the nonequilibrium analog of a phase transition. We can 
model the temporal and spatial structure of the transition with a phenomenological 
equation written in terms of a parameter that describes the amplitude of the convecting 
state. This convection order parameter will be zero below threshold and nonzero 
above. A variety of near-threshold phenomena have been treated successfully using 
such amplitude equations. 

Now consider a nonlinear system already in a state with an overall, regular pattern: 
for example, a sequence of straight convection rolls in a large box or the rectangular 
arrangement of convection cells in Fig. 16c. Let this pattern be described by a dominant 
wave vector (or vectors) that we call ko. Many patterns close to the initial one can 
be studied by considering slow spatial and temporal modulation of ko. The resulting 
phase equations can be viewed as the nonequilibrium analogs of hydrodynamics since 
they apply to low-frequency, long-wavelength motions near a given state. Again, such 
phase equations have been used to .analyze many specific fluid flows. 

Prototype equations, although perhaps motivated by specific fluid motions, are 
not necessarily strictly derivable from the fundamental Navier-Stokes equations but 
rather are intended to capture the essence of certain nonlinear effects. More precisely, 
prototype equations often serve as a means of gaining insight into competing nonlinear 
effects and are thus extremely important in developing analytic understanding. The 
Korteweg-deVries equation (Eq. lo), which played a central role in the discovery 
of solitons, can be viewed as an example of a prototype equation. That it is also 
derivable for surface waves in shallow, narrow channels is an added bonus. Similarly, 
the Kuramoto-Sivashinsky (KS) equation (Eq. 28)-is another prototype equation. 

Very recently, pattern formation in convecting fluid flows in large containers 
has been studied using the Kolmogorov-Spiegel-Sivashinsky, or KSS, equation-a 
generalization of the original KS equation. Because some very interesting results about 
the interplay of coherent structures and chaos have come from these studies, I will use 
the KSS equation to illustrate the prototype-equation technique. 

The specific form of the equation is 
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where a ,  (3, 7, and 6 are adjustable parameters. This equation models large-scale 
unidirectonal flow. An example is the Kolmogorov flow in which an effectively two- 
dimensional viscous fluid is subjected to a unidirectional external force field periodic 
in one of the spatial directions. Such a flow can be realized in the laboratory using thin 
layers of electrolytic fluids moving in a periodic magnetic field. 

In Eq. 31 4> = 4>(x, t) is the fluctuating part of the stream function (that is, the 
stream function minus the mean periodic field component), 94>/9t is the familiar 
local derivative for the fluid motion, (34 represents the classical linear damping of 
the fluctuations, 7(9(A/9x)2 is the convective derivative for the fluid motion in an 
unfamiliar form, and the last terms describe viscosity effects. 

One can see the role of the local and convective derivative terms more directly 
by differentiating Eq. 31 with respect to x and considering the gradient of the stream 
function: u(x, t) = 94>/9x, which is related to the velocity. In the differentiated 
equation, the two terms assume the form Qu/Qt+l'yuQu/Qx, familiar from, for example, 
the Korteweg-deVries equation (Eq. 10). Note that the convective term in Eq. 31 
increases rapidly when (A is varying rapidly in x (that is, for large wavenumbers k), 
correctly suggesting that this term leads to a flow of energy from large to small spatial 
scales. 

A careful examination of the viscosity effects-given by the final three terms in 
Eq. 3 1-reveals the interplay and competition essential to the pattern-forming properties 
of this model. The lowest-order diffusion term, a84>/9x2, has, since a > 0, the wrong 
sign for stable diffusion and hence leads to an exponential growth of the solution for all 
wave numbers k. The higher order linear diffusion term 9*4>/9x4, controls the growth 
for large k. As a consequence, only a certain range of wave numbers (0 < k < kc) 
exhibits the linear instability that leads to rapid growth. This negative viscosity region 
causes a flow of energy from small to larger spatial scales and thus creates the coherent 
structures observed in the equations. In turn, the growth of these structures is limited 
by the nonlinear terms-in particular, by the convective derivative terms-and the 
resulting competition between the negative viscosity and convective terms provides a 
mechanism for energy to cycle back and forth between small and large scales. Finally, 
the nonlinear viscosity term, 6 g ( 9 4 > / 9 ~ ) ~ ,  provides an important local variation in 
viscosity; in regions where 84>/9x is small, the effective local viscosity is negative, but 
as 94/9x grows, the nonlinearity leads to a locally positive viscosity and to normal 
dissipation of energy at small scales. 

For the KSS equation, recent analytic studies have shown that the full partial 
differential equation is strictly equivalent to a set of coupled ordinary differential 
equations corresponding to a finitedimensional dynamical system. Further, the phase- 
space dimension of this dynamical system is proportional to the number of linearly 
unstable modes and hence increases linearly with the length of the system L. In addition, 
the finite dynamical system possesses a universal strange attractor with fractal dimension 
also proportional to L. These results are concrete examples of the mode-reduction 
program, and their attainment in an equation involving local negative viscosity effects 
marks a step forward in analytic understanding of turbulence. However, as in the case 
of the KS equation, the results are not of themselves sufficient to identify the natural 
coherent structures that arise in Eq. 3 1 nor to relate them directly to the reduced modes. 

To search for the coherent structures, extensive numerical simulations of the KSS 
equation are currently in progress. Figure 19 depicts one solution (for a = 2, (3 = 0.15, 
7 = 1, and 6 = 0.58) with a system size such that there are fifty unstable modes. The 
black cross-hatched structures are regions of (spatially homogeneous) chaos. Note that, 
with the horizontal axis representing time and the vertical axis representing position, 
these regions often propagate through the system, as indicated by the diagonal "motion" 
of the cross-hatched areas. 

The most striking features in Fig. 19 are the orange horizontal bands, which 
intermittently appear and disappear at various locations and times within the system. 
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These are relatively quiescent, large-scale spatial subdomains and are the candidates for 
the coherent structures. Notice that the propagating chaotic regions do not penetrate 
these structures. However, as suggested in particular by the region around the long-lived 
coherent structure in the lower right comer, one may be able to describe interactions 
of the propagating chaotic regions with the coherent structures. Such interactions may 
involve phase shifts (as in the case of solitons) as well as creation and annihilation of 
both the propagating chaos and the coherent structures. At present, these and related 

THEKSSSYSTEM 

Fig. 19. This solution of the KSS equation 
(for a = 2, f i  = 0.15, 7 = 1, and 6 = 0.58 
in Eq. 31) has both regions of chaos (cross- 
hatched) and regions of relatively quiescent 
behavior (orange). Since time is represented 
by the horizontal axis and the spatial vari- 

able by the vertical axis, the diagonal "mo- 
tion" of crosshatched areas represents prop- 
agation of these chaotic regions through the 
system. (Photo courtesy of Basil Nicolaenko 
and Hughes Chate, Los Alamos National Lab- 
oratory.) 

questions are under active investigation. 
From our discussion it is clear that, although exciting results are beginning to 

appear, development of the paradigm of complex configurations and pattern formation 
will occupy researchers in nonlinear science for years to come. It is perhaps of interest 
to suggest a few of the broad questions that must be addressed. 

To what extent can the complex structures and patterns be thought of as superposi- 
tions of coherent structures, and in what "space" can these structures be superposed? In 
this regard, we know that for weakly perturbed soliton-bearing systems, the appropri- 
ate space in which approximate superposition holds is the inverse scattering transform 
space. Further, some recent studies suggest that certain turbulent flows can usefully be 
decomposed as sums of terms, each having vorticity parallel to the velocity. 
0 What is the dynamics of competition among patterns? How does this competition 
depend on the nature of the interactions among individual coherent structures? For what 
systems can one view the different patterns as local minima in a "pattern accessibility" 
space? What can one say about the basins of attraction in this space? 

In systems with constrained geometry-such as the fluid experiment of Figs. 15 
and 16Ã‘ca one understand quantitatively the observed selection of more symmetric 
patterns over less symmetric ones? Here the analogy to pinning phenomena in solid 
state systems may be useful. 
0 For what pattern-forming systems can one construct a hierarchy of equations in 
which successive levels of approximation lead downward from the Navier-Stokes equa- 
tions through an approximate partial differential equation to a finite set of coupled or- 
dinary differential equations? How can one match the solutions across various levels 
of this hierarchy? Such matching will be essential, in particular to understand what 
happens when the effective equations lower in the hierarchy break down. 
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What can one say about pattern formation in fully-developedi th~~~-dimensional 
turbulence? For the full Navier-Stokes equations, can anything analogous to the 
competing mechanisms in the KSS equation be identified, so that both a cycle involving 
a flow of energy from large to small spatial scales and the re-PmergenCe of large-scale 
coherent structures can exist? If so, this cycle could form th? basis for a "t~bukmce 
engine," which would explain at least the major features of transport in turbulent flows. 

Since most of our remarks have focused on problems in fluid dynamics, it is im- 
portant to re-emphasize the broad impact of our last paradigm- The complex fractal 
structures observed in ceramic cracks and in oil recovery pr~blems, although treated 
for convenience in our discussion of fractals, are, in fact, more accurately vkwed 
as examples of patterns. Similarly, dendritic growth is a solidification Process criti- 
cally dependent on a pattern selection mechanism that is itself exquisitely sensitive to 
anisotropy and extrinsic noise. The development of mesoscale textures-that is, Pat- 
terns larger than the atomic scale but yet not macroscopic-remains an important issue 
for metallurgy. 

In fact, in the microscopic theories of solid state materials, the n ~ h a n i s m  under- 
lying pattern dynamics is a question not yet fully resolved. fiere, in distinction to the 
case of fluids, one does not have a fundamental model such as the Navier-Stokes equa- 
tions to rely on, so one cannot naively assume diffusive c o u e g  among the Patterns. 
Instead, a variety of possible mechanisms must be looked at ~ l o s e l ~ .  

In biology, pattern formation and selection is ubiquitous, with applications from 
the cellular to the whole organism level. And in ecology, nodlinear reaction-diffusion 
equations suggest spatial patterns in predator-prey distributions and in the spread of 
epidemics. 

To conclude this section, I will look at an intriguing feat0re of nonlinear Pattern- 
forming systems-the property of pattern self reproduction-using a celhdar automaton. 
Cellular automata are nonlinear dynamical systems that are discrete in both space and 
time and, importantly, have, at each site, a finite number Of state values (allowed 
values of the dependent variable). Such systems were i n v e ~ t d  an^ first explored, 
by John von Neumann and Stan Ulam. Currently, they are being studied both for 
their fascinating intrinsic properties and for a number of appli+tiOns' including Pattern 
recognition. They are also being used as novel computation$l algorithms for solving 
continuum partial differential equations (see "Discrete Fluids" for the example of lattice- 
gas hydrodynamics). 

Figure 20 shows four stages in the growth of a self-repr0ducing Pattern f ~ u n d  in 
a cellular atuomaton with eight possible states per site. At e a ~ h  step in time, the new 
state of a given cell is determined by a small set of rules based on the current state of 
the cell and the state of its nearest four neighbors on a squar'e lattice. The particular 
pattern shown generates copies of itself, forming a colony. On an infinite lattice the 
colony would continue to grow forever. Despite its simplicity and the rigidity of its 
predetermined rules, the self-reproduction of this automaton is intriguingly reminiscent 
of the development of real organisms, such as coral, that groW in large colonies. 

The Future of Nonlinear Science 

From the many open questions posed in the previous sections9 it should be clear that 
nonlinear science has a bright and challenging future. At a fundamental level issues such 
as the scaling structure of multifractal strange sets, the basis far the ergodic hypothesis, 
and the hierarchy of equations in pattern-forming systems r e g i n  unresolved. On the 
practical side, deeper understanding of the role of complex cdnfigurations in turbulent 
boundary layers, advanced oil recovery, and high-performance ceramics would provide 
insight valuable to many forefront technologies. And emerging solutions to problems 
such as prediction in deterministically chaotic systems or modeling fully developed 
turbulence have both basic and applied consequences. Further, the nonlinear revolution 
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promises to spread to many other disciplines, including economics, social sciences, and 
perhaps even international relations. 

If, however, one had to choose just one area of clearest future opportunity, one 
would do well to heed another of Stan Ulam's well-known bans mots: 

"Ask not what mathematics can do for biology, 
Ask what biology can do for mathematics." 

CELLULAR AUTOMATON 

If we replace "mathematics" with "nonlinear science," Stan's comment becomes even 
more appropriate to the present situation. We have already seen the beginnings of 
an understanding of many aspects of morphology, from fractal structures in ferns to 
nonlinear pattern-selection models for human digits. Similarly, the role of chaos in 
biological cycles, from heartbeats to cell densities, is rapidly being clarified. And the 
basic observation that incredibly complex behavior-including both pattern formation 
and self-reproduction~can emerge in systems governed by very simple rules has 
obvious implications for modeling biological phenomena. 

But the greatest challenge is clearly to understand adaptation, learning, and evo- 
lution. Adaptive complex systems will have features familiar from conventional dy- 
namical systems, including hierarchical structures, multiple basins of attraction, and 
competition among many metastable configurations. In addition, they must also have a 
mechanism for responding to, and taking advantage of, changes in their environment. 

One approach to adaptation is to construct an explicit temporal hierarchy: one 
scale describes the actual dynamics and a second, slower time scale allows for changes 
in the nonlinear equations themselves. Models for the human immune system and for 
autocatalytic protein networks are among the prospective initial applications for this 
concept. 

A second approach to adaptation, sometimes termed connectionism, is based on 
the idea that many simple structures exhibit complex collective behavior because of 
connections between the structures. Recent specific instances of this approach include 
mathematical models called neural networks. Although only loosely patterned after 

Fig. 20. This cellular automaton consists of a 
grid of square cells with each cell able to take 
on any of eight possible states (indicated by 
different colors). (a) The basic building block 
of a repeating pattern for this automaton is 
a hollow square occupying an area of 10 by 
15 cells with a tail that develops (b) until it 

produces a second hollow square. (c) The 
pattern continues to grow in time until (d) it 
has produced a large colony of the original 

pattern. (Figures courtesy of Chris Langton, 
Los Alamos National Laboratory.) 
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true neurological systems, such networks show remarkable promise of being able to 
learn from experience. A related set of adaptive models, called classifier systems, show 
an ability to self-generate a hierarchy of behavioral rules: that is, the hierarchy is not 
placed a priori into the system but develops naturally on the basis of the system's 
experience. In general, connectionist models suggest a resolution of the long-standing 
issue of building a reliable computer from unreliable parts. 

In all these future developments, the tripartite methodology incorporating experi- 
mental mathematics, real experiments, and novel analytic approaches will continue to 
play a critical role. One very exciting prospect involves the use of ultraspeed interactive 
graphics, in which enormous data sets can be displayed visually and interactively at 
rates approaching the limits of human perception. By using color and temporal evo- 
lution, these techniques can reveal novel and unexpected phenomena in complicated 
systems. 

To insure the long-term success of nonlinear science, it is crucial to train young 
researchers in the paradigms of nonlinearity. Also, interdisciplinary networks must be 
fostered that consist of scholars who are firmly based in individual disciplines but are 
aware of, and eager to understand, developments in other fields. 

In all these respects, nonlinear science represents a singularly appropriate intel- 
lectual legacy for Stan Ularn: broadly interdisciplinary, intellectually unfettered and 
demanding, and-very importantly-fun. 4 
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THE 
A Comp 
Problem 

here are a few problems in physics that stir deep emotions every time they 
are discussed. Since physicists are not generally speaking an emotional group 

in licated T of people, the existence of these sensitive issues must be considered a strong 
indication that something is amiss. One such issue is the interpretation of 

Mathematics 
and Physics 
by Adrian Patrascioiu 

quantum mechanics. I will take a moment to discuss that problem because it bears 
directly on the main topic of this article. 

In quantum mechanics, if the question asked is a technical one, say how to compute 
the energy spectrum of a given atom or molecule, there is universal agreement among 
physicists even though the problem may be analytically intractable. If on the other hand 
the question asked pertains to the theory of measurement in quantum mechanics, that 
is, the interpretation of certain experimental observations performed on a microscopic 
system, it is virtually impossible to find two physicists who agree. What is even more 
interesting is that usually these controversies are void of any physical predictions and are 
entirely of an epistemological character. They reflect our difficulty in bridging the gap 
between the quantum mechanical treatment of the microscopic system being observed 
and the classical treatment of the macroscopic apparatus with which the measurement is 
performed. It is usually argued that we, physicists, have difficulty comprehending the 
formalism of quantum mechanics because our intuition is macroscopic, hence classical, 
in nature. Now if that were the case, we should have as much difficulty with special 
relativity, since we are hardly used to speeds comparable to that of light. Yet, strange 
as it seems at first, I have never heard physicists argue about the "twin paradox," the 
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classic example of an unexpected prediction of Einstein's relativity. So there must be 
something about quantum mechanics that "rubs us" the wrong way. The question is 
what? 

Perhaps the best way in which the strange predictions of quantum mechanics can 
be quantified is a certain inequality first formulated by Bell (Bell 1965). For illustration, 
consider a positronium atom, with total angular momentum zero, that decays into an 
electron and a positron. Suppose we let the electron and the positron drift apart and 
then measure their spin components along two axes by passing them through two 
magnetic fields. Now in quantum mechanics the state of the positronium atom is a 
linear superposition of spin-up and spin-down states: (I T)+ I L)- - 1 J-)+ 1 T)-)/a. 
We could therefore ask ourselves whether in each passage through the apparatus the 
electron and the positron have a well-defined spin (up or down), albeit unknown to us. 
Some elementary probabilistic reasoning shows immediately that if that were the case, 
the probabilities for observing up or down spins along given axes would have to obey 
Bell's inequality. The experimentally measured probabilities violate this inequality, in 
agreement with the predictions of quantum mechanics. So the uncertainties in quantum 
mechanics are not due to incomplete knowledge of some local hidden variables. What is 
even stranger is that in a refinement of the experiment in which the axes of the magnetic 
fields are changed in an apparently random fashion (Aspect, Grangier, and Roger 1982), 
the violation of Bell's inequality persists, indicating correlations between space-like 
events (that is, events that could be causally connected only by signals traveling faster 
than the speed of light). While in this experiment no information is being transmitted 
by such superluminal signals, and hence no conflict with special relativity exists, the 
implication of space-like correlations hardly alleviates the physicist's uneasiness about 
the correct interpretation of quantum mechanics. Of course this uneasiness is not felt by 
all physicists. Particle physicists, for instance, take the validity of quantum mechanics 
for granted. To wit, anybody who reads Time knows that they, having "successfully" 
unified weak, electromagnetic, and strong interactions within the framework of quantum 
field theory, are presently subduing the last obstacle, quantizing gravity by unifying all 
interactions into a quantum field theory of strings. And they are doing so in spite of the 
fact that the existence of classical gravitational radiation, let alone that of the quantized 
version (gravitons), has not been established experimentally. 

An even older controversy, which in the opinion of some physicists has long 
ceased to be an interesting problem, concerns the ergodic hypothesis, the subject of 
this discussion. I will try to elaborate on this topic as fully as my knowledge will 
allow, but, by way of introduction, let h e  just say that the ergodic hypothesis is an 
attempt to provide a dynamical basis for statistical mechanics. It states that the time- 
average value of an observable-which of course is determined by the dynamics-is 
equivalent to an ensemble average, that is, an average at one time over a large number 
of systems all of which have identical thermodynamic properties but are not identical 
on the molecular level. This hypothesis was advanced over one hundred years ago 
by Boltzmann and Maxwell while they laid the foundations of statistical mechanics 
(Boltzmann 1868, 1872 and Maxwell 1860, 1867). The general consensus is that the 
hypothesis, still mathematically unproven, is probably true yet irrelevant for physics. 
The purpose of this article is to review briefly the status of the ergodic hypothesis from 
mathematical and physical points of view and to argue that the hypothesis is of interest 
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not only for statistical mechanics but for physics as a whole. Indeed the mystery 
of quantum mechanics itself may possibly be unraveled by a deeper understanding 
of the ergodic hypothesis. This last remark should come as no surprise. After all, 
the birth of quantum mechanics was brought about by the well-known difficulties of 
classical statistical mechanics in explaining the specific heats of diatomic gases and 
the blackbody radiation law. I shall elaborate on the possible connection between the 
ergodic hypothesis and the resolution of these major puzzles in the last part of this 
article. 

The Mathematics of the Ergodic Hypothesis 

I shall begin my presentation with the easier part of the problem, the mathematical 
formulation of the ergodic hypothesis. Consider some physical system with N degrees 
of freedom and let qh  . . . , q~ be its positions and p, ,  . . . , p ~  its momenta. We shall 
assume that the specification of the set of initial positions {qO} and momenta {po} at 
time t = 0 uniquely specifies the state of the system at any other time t via the equations 
of motion: 

9qi (t) - - 9qi ({q(t)}, {~( t )})  
at a t  

ana 

The time evolution of the system can be represented as a path, or trajectory, through 
phase space, the region of allowed states in the space defined by the 2N independent 
coordinates {q} and {p}. An observable of this system 0 is an arbitrary function of 
{q} and {p}, O({q}, {p}). The time-average value of some observable O({q}, {p}) 
along the phase-space trajectory starting at t = 0 at {qo}, {po} is defined as 

Obviously the integral in Eq. 2 makes sense only for suitable functions of {q} and {p}, 
which are the only ones we shall consider. In fact we shall further restrict the class of 

- 
observables to those for which l i m ~ - ~ ~  OT exists. (This is not a severe restriction; for 
instance, if O({q(t)}, {~(t)})  is bounded along the trajectory, the limit clearly exists.) 
The notation in Eq. 2 makes clear that, a priori, time-average values depend upon the 
initial conditions {qo} and {po}. 

As time passes, the trajectory of the system winds through the phase space. If 
the motion takes place in a bounded domain, one might expect that as T Ã‘ co the 
average values of most observables settle down to some sort of equilibrium values 
(time-independent behavior). What would the phase-space trajectory look like if the 
system approached dynamical equilibrium? One could characterize it by saying that the 
frequency with which different neighborhoods of the phase space are visited converges 
to some limiting value p({q}, {p}) at each point in phase space. That such limiting 
frequencies exist under quite general circumstances was shown in 1927 by Birkhoff 
(see Birkhoff 1966) and constitutes the first step towards bridging the gap between 
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dynamics and statistics. Indeed, Birkhoff's theorem allows one to replace time averages 
by ensemble averages, defined as follows. Let the state of the system be specified by 
the sets {q} and {p}, and postulate that the probability for the system to be in the 
neighborhood of the state ({q}, {p}) is 

That is, the general form of the probability measure is the time-independent frequency p 
times the volume element of the phase space. A particular probability measure specifies 
completely a particular ensemble of representative systems; that is, it gives the fraction 
of systems in the ensemble that are in the state ({q}, {p}). In keeping with usual 
probabilistic notions, I shall assume that the probability measure has been normalized 
so that the integral of the probability measure for all possible states ({q}, {p}) is unity, 

The ensemble average of the observable O({q}, {p}) is defined as 

Birkhoff's theorem states that, if the motion is restricted to a bounded domain, 
then for many initial conditions there exists an ensemble (probability measure) such 
that the time-average value of the observable equals an ensemble average: 

Please note that Eq. 6 indicates that the time-average value of 0 ({q}, {p}) becomes 
independent of the initial conditions {go} and {po} as T + oo. As already mentioned 
above, this is true for many, but generally not all, initial conditions. If Eq. 6 is true 
for almost all initial conditions (for all points in the allowed phase space except for a 
set of measure zero), the flow through phase space described by Eqs. 1 must be fully 
ergodic; that is, for almost all initial conditions {qo}, {po} and with probability 1, the 
flow passes arbitrarily close to any point {q}, {p} in phase space at some later time. 
The assumption in statistical mechanics that time averages of macroscopic variables 
can be replaced by ensemble averages (that is, that Eq. 6 holds) is therefore called the 
ergodic hypothesis. 

In general, however, the flow through the phase space defined by the equations of 
motion may not cover the whole of the allowed phase space for almost all initial con- 
ditions. Instead the allowed phase space is divided into several "ergodic" components, 
that is, subregions 0, of the phase space such that if the flow starts in subregion 0;, 
then there exists a time t at which the flow will touch any given neighborhood in the 
set of neighborhoods covering 0,. Moreover the flow remains in 0, for all time. Con- 
sequently, time-average values do depend on knowing in which "ergodic component" 
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the system was started. 

The Ergodic Hypothesis and the Equipartition of Energy. In statistical mechanics 
the ergodic hypothesis, which proposes a connection between dynamics and statistics, 
is sometimes regarded as unnecessary, and attention is placed instead on the assumption 
that all allowed states are equally probable. In this paper I emphasize that when time 
averaging is relevant to a problem, the assumption of equal a priori probabilities is 
essentially equivalent to the ergodic hypothesis (Eq. 6). To see this I will restate the 
general problem and gradually narrow it down to the context of classical statistical 
mechanics. 

In general, given a phase space f2 and a probability density p({q}, {p}), one has 
defined an ensemble. Furthermore one can consider a map of the phase space onto 
itself. (An example is provided by Eqs. 1, which are really a set of maps indexed 
by the continuous parameter t ) .  A natural question to ask is whether the probability 
measure 

is invariant under this map. As we have said, Birkhoff's theorem states that under 
many circumstances such invariant measures exist and allow the replacement of time 
averages by ensemble averages. Thus the existence and construction of all the invariant 
measures for a certain flow is the first of two mathematical problems related to the 
ergodic hypothesis. 

As stated so far this problem is much more general than the one of interest to 
Boltzmann and Maxwell in connection with the foundations of statistical mechanics. 
Indeed, the existence of a probability measure left invariant by a given set of maps can 
be investigated whether or not the sets {q} and {p} defining the maps are canonically 
conjugate variables derivable from a Harniltonian, whether the set of maps is discrete or 
continuous, etc. At present the construction of such invariant measures is being actively 
pursued by researchers studying dynamical systems, especially dissipative ones such 
as those relevant to the investigation of turbulence (for example, systems described 
by the Navier-Stokes equations). (See the section Geometry, Invariant Measures, and 
Dynamical Systems in "Probability and Nonlinear Systems.") 

Of particular interest in statistical mechanics, especially in connection with the er- 
godic hypothesis, is the invariant measure appropriate for describing physically isolated 
systems. The ensemble specified by this measure is traditionally called the microcanoni- 
cal ensemble. The systems of interest are characterized by nonlinear interactions among 
the constituents and by a very large number of degrees of freedom. Generically, certain 
observables of a physically isolated system, such as the total energy and electric charge, 
are conserved; that is, they remain constant at their initial values. So let {I, ({q}, {p})}, 
i = 1, . . . , M be the complete set of independent, conserved observables of a system 
with N degrees of freedom. Obviously M < 2N. Since the flow in Eqs. 1 obeys 
all these conservation laws, it is clear that any invariant measure of the flow must be 
compatible with all the conservation laws. Consequently the probability measure must 
contain a delta function for each conserved quantity so that the probability is nonzero 
only when the conservation law is satisfied. (A delta function 6(x - xn) can be thought 
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of as having the value & for x values between XQ - e and XQ + e for any e, no matter 
how small, and the value 0 everywhere else. The integral of a delta function is thus 
equal to unity.) 

The fundamental hypothesis in statistical mechanics is that for isolated systems of 
physical interest (complicated nonlinear systems with many degrees of freedom), the 
measure 

is left invariant by the equations of motion and is the only such measure. In other 
words, the hypothesis states that the microcanonical ensemble is defined by the measure 
in Eq. 7. Note that the probablity density in Eq. 7 is flat; that is, all regions of phase 
space consistent with the conservation laws are equally probable. 

To understand why this assumption of equal a priori probabilities is, in effect, a 
restatement of the ergodic hypothesis, one must realize that the only systems under 
consideration in classical statistical mechanics are Hamiltonian systems (systems for 
which the equations of motion can be derived from a Hamiltonian principle). The 
existence of a Hamiltonian function H ( { q } ,  {p}) means that the equations describing 
the flow through phase space, Eqs. 1, can be written in the form 

and 

Here [ f ,  g ]  denotes the Poisson bracket: 

The existence of a simplectic structure (the Poisson bracket) is a very restrictive 
condition on the flow, much more so than the mere conservation of the energy. Indeed, 
through Liouville's theorem, it guarantees the conservation of the phase-space volume 
element 

and thus it proves that the measure in Eq. 7 is invariant under Hamiltonian flows. 
Thus the first mathematical problem of constructing an invariant measure is solved for 
Hamiltonian systems. Consequently the ergodic hypothesis (Eq. 6) is automatically 
satisfied provided that the flow is fully ergodic. Proving that the flow is fully ergodic 
is the second mathematical problem related to the ergodic hypothesis and is the one 
that remains to be solved for Hamiltonian systems. If in fact the flow is not ergodic, 
then the assumption of equal a priori probabilities would not describe the time-average 
behavior of the system, at least not for all possible observables. 

Note that if the flow is fully ergodic and all allowed states are equally probable, 
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then we have an equipartition of energy; that is, the energy of the system is divided 
equally among tPe N degrees of freedom. Indeed, let us consider for simplicity 
the case of a ~ ~ n i l t o n i a n  system in which only the total energy is conserved. The 
microcanonical measure then is simply 

where the mi's $e the particle masses. Because of the symmetry of the measure 
defined by ~ q s .  11 and 12 under the interchange of the pi 's, one can easily show that 
the average kinetic energy (p?/2mi) is independent of i. Usually one uses that fact 
to define a temperature T via (p2/2m) = kT/2  (where k is the Boltzmann constant). 
such consideratioris can be extended to the normal modes of a lattice, which will be 

discussed later, are generically referred to as the equipartition of energy. 

Mathematical ~esults .  Having formulated the mathematical problem, it may be 
of imprest to state briefly what rigorous results have been obtained so far about the 
circumstances undpr which a flow is fully ergodic. 

i) oxtoby and Ularn proved in 1941 that in a bounded phase space the continuous 

ergodic are everywhere dense in the space of all continuous measure- 

preserving In other words, a topology can be chosen such that ergodic 
transformations foim the "bulk" of the whole space of continuous measure-preserving 
maps. This theor@m says nothing about the measure of the ergodic transformations, 
which may even pe vanishing. (See page 110 in "Learning from Ubm.") A corre- 
sponding theorem otating an analogous property of a real dynamical system with a finite 
number of degrees of freedom does not exist, and in fact the KAM theorem proves the 
contrary (see below). It is also known that Hamiltonian flows are quite rare among 
measure-preserving maps, and therefore the Oxtoby and Ulam result guarantees nothing 
about the density (  ̂ergodic Hamiltonian flows in the space of all Hamiltonian flows. 

ii) For finite /^ the K o ~ ~ o ~ o ~ o v - A m o l d - M o s ~ ~  (KAM) theorem (see Arnold and 

Avez 1968) that the ergodic hypothesis is violated for a certain class of 
systems. The theofem considers a completely integrable system (M = N in Eq. 7) and 
its response to an arbitrary, weak nonlinear perturbation. By a canonical transformation 
one can show that a completely integrable system with N degrees of freedom is 
equivalent to N d$coupled harmonic oscillators; hence it is a linear system, and its 
motion in phase  pace occurs on hypertori rather than on the whole phase space. 
The KAM theorenl states that in the phase space of a weakly nonintegrable (weakly 
nonlinear) HamiltoIliEiIl, some motions still are restricted to tori, and these tori occupy 

a nonzero measure of the phase space. (Figure 1 shows a typical structure of the 
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PHASE SPACE OF A WEAKLY phase space for a weakly nonintegrable Hamiltonian.) Thus these systems have several 

NONINTEGRABLE HAMILTONIAN ergodic 

SYSTEM 
iii) In 1963 Sinai proved the ergodic hypothesis for certain billiard systems (Harnil- 

Fig. The 'ystem has four degrees Of free- tonian systems in which hard spheres bounce elastically off each other and the container 
dom, but conservation of energy allows us 

walls). The geometry of the boundary turns out to be a crucial factor in proving that 
to display the phase space in three dimen- 

sions, which represent the variables x ,  y, the flow is ergodic. 

and g. The phase space contains nested 
invariant tori on which motion is quasiperi- 
odic so that a single orbit covers a torus 
densely. The gaps between the tori are 
chaotic regions in which the orbits appear 

as random as the toss of a coin. Since 
the nested tori have a finite measure in the 

phase space, this Hamiltonian system vio- 
lates the ergodic hypothesis. 

iv) It has not been possible to prove the ergodic hypothesis even for a gas of hard 
spheres, although it is generally believed to be true in this case. 

v) For a long time the general belief was that the KAM theorem poses no problem 
for the ergodic hypothesis once the thermodynamic limit (the limit as N + oo at 
fixed density) is taken. Counterexamples to this claim have recently been constructed 
(Bellissard and Vittot 1985), but it is premature to judge their generality. 

vi) There exists no satisfactory formulation of the ergodic hypothesis for continuous 
media (field theory), since it is not known how to generalize the microcanonical measure 
to systems with an infinite number of degrees of freedom, especially when the total 
energy of the system is finite. It is interesting that while appropriate ensemble averages 
have not been defined, the existence of global solutions (in time), and therefore the 
existence of time averages, for several interesting field theories (such as classical 
electrodynamics and Yang-Mills theories) has been established (Eardley and Moncrief 
1982). 

In conclusion, from a mathematical point of view, the ergodic hypothesis has 
proved to be one of the most difficult problems in the last hundred years or so. Only 
two flows, both billiards, have been proven to be ergodic. Perhaps today's computers 
will speed up the rate of analytical progress by helping our intuition about the nature 
of the flow. 

The Physics of the Ergodic Hypothesis 

Next I wish to analyze the ergodic hypothesis from a physical point of view. 
Undoubtedly, a dynamical approach to a physical system with many degrees of freedom, 
such as a gas, is impossible, and a statistical one must be developed. In doing 
so one must endeavor to capture the right physics. If the attempt has been really 

successful, the theory will withstand experimental scrutiny. But what should be done 
if the predictions go astray, as did the predictions of classical statistical mechanics for 
blackbody radiation? A sensible approach is to go back and examine what fundamental 
assumptions were made, which is what I shall do now. 

The first question that must be settled is what should be considered "the system." 
Indeed the instruction in statistical mechanics is to integrate over all canonical positions 
and momenta with a certain measure. However, one must decide which degrees of 
freedom to include. For instance, take the case of the diatomic gas. Each molecule 
has two atoms, each atom has its own electrons and nucleus, and the latter in turn is 
made of quarks and gluons, say. Moreover, since the constituents are charged, they are 
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coupled to the electromagnetic field inside the container (and also to the gravitational 
field). Probably most readers will think that this is not a serious question: at a certain 
temperature only certain degrees of freedom are excited, and these are the only ones 
to be integrated over. Hidden within this superficially sensible-sounding answer is one 
of two extremely important assumptions: 

i) The ergodic hypothesis is strictly false, so that certain degrees of freedom, 
although dynamically coupled, never get excited and act as spectators to the thermal 
equilibrium that sets in for the remaining degrees of freedom. 

ii) Or, the system dynamically develops largely different time scales, and the 
number of degrees of freedom that are more or less in equilibrium keeps increasing 
with time. 

In either case the use of statistical mechanics becomes more subtle, since only 
by gaining a good grasp of the underlying dynamics can one decide what degrees 
of freedom are relevant in certain circumstances. In particular, there is no a priori 
reason to believe that the contributions to the specific heat of the vibrations and the 
rotations of a diatomic gas ought to be equal at all temperatures and during a typical 
time of observation, as was assumed in the classical predictions of statistical mechanics. 
Neither is there any reason to predict the Rayleigh-Jeans distribution (Fig. 2) for black- 
body radiation (which assumes the equipartition of energy between all modes of the 
electromagnetic field), since some modes of the cavity may be effectively decoupled 
(case i above) or so weakly coupled that they haven't had time to thermalize (case 
ii). Thus the standard examples for the breakdown of classical statistical mechanics 
may reflect an inappropriate application of the ergodic hypothesis rather than a need 
for quantization, as is usually argued in physics textbooks. 

The second important question that must be addressed in deciding the relevance 
of the ergodic hypothesis for physics is why we are using a statistical description in a 
given physical situation. Consider, for instance, the measurement of the specific heat 
of a diatomic gas. Typically one lets the gas "reach equilibrium" with a reservoir at a 
given temperature and then makes a certain macroscopic measurement during a certain 
time interval. To obtain reasonable statistics, the measurement is repeated several times. 
Clearly the process just described involves three types of averaging at the molecular 
dynamics level: 

i) over initial conditions (each repetition of the measurement involves a different 
set of initial conditions); 

ii) over time (each measurement extends over a certain time, during which the gas 
-valves as a dynarnical system); and 

iii) over microscopic degrees of freedom (this type of averaging is inherent in the 
measurement of macroscopic variables). 

BLACKBODY RADIATION AT 1600 K 

Fig. 2. Theoretical predictions and exper- 
imental data for the power radiated by a 
blackbody at 1600 K. The classical Rayleigh- 
Jeans law, u(v, T)  = ( ~ T ~ / C ~ ) V ~ ~ J ,  is based 
on equipartition of energy among all the 
modes of an electromagnetic field. The total 

(kinetic plus potential) energy in each mode 
is kJ, and the number of modes in the fre- 
quency interval (v, v+dv) is 8irv2/c3, which 
is proportional to A ' .  The quantum Planck 
law, in agreement with experiment, yields a 
peaked distribution that decreases rapidly 
with wavelength. The Planck law is based 
on the assumption that the energy in each 
mode is quantized; that is E = nhv, where 
n is an integer and h is Planck's constant. 

I 

\ Rayleigh-Jeans 

Wavelength (pm)  

Before analyzing in detail the likely statistical relevance of each of these averaging 
operations, let me hasten to say that clearly only the averaging over time has anything 
to do with the ergodic hypothesis. Those physicists who believe that the ergodic 
hypothesis is not important for the foundations of statistical mechanics dismiss the 
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Excerpts from "Studies o, 
Nonlinear Problems" by 
Fermi, Pasta, and Ulam 

his report is intended to be the first 

T one of a wries dealing with the be- 
havior of certain nonlinear physi- 

cal systems where the nonlinearity is intro- 
duced as a perturbation to a primarily lin- 
ear problem. The behavior of the systems 
is to be studied for tiroes which are long 
compared to the characteristic periods of the 
corresponding linear problems. 

The problems in question do not seem to 
admit of analytic solutions in closed form, 
and heuristic work was performed nmer- 
ically on a fast electronic computing ma- 
chine (MANIAC I at Los Alamos).* The 
ergodic behavior of such systems was stud- 
ied with the primary aim of establishing, 
experimentally, the rate of approach to the 
equipartition of energy among the various 
degrees of freedom of the system. Several 
problems will be considered in order of in- 
creasing complexity. This paper is devoted 
to the first one only. 

We imagine a one-dimensional contin- 
uum with the ends kept fixed and with 
forces acting on the elements of this 
string. In addition to tihe usual linear term 
expressing the dependence of the force on 
the displacement of the element, this force 
contains higher order witas, For the pur- 
pases of numerical work this continuum is 
replaced by a ftmte ambar of points (at 

tual computation) so that 
the partial differential equation defining tae 
motion of (bis s aced by a finite 
number of total equations. 

The solution to the cocreapondmg lib 
ear problem is a periodic vibration of the 

string. If (he initial position of the 
is, say, a stogie sine wave, the serin 
oscillate in this mode indefinitely. 
in@ witfa the string in a simple 
tion. for example in the first 

would assume more and 
hapes, and. for t tending 

to infinity, would get into states where all 
tfie Fourier modes acquire increasing impor- 
mw, In order to see this, the shape of the 
string, that is to say . . . [its displ 
wad (he kinetic energy . . . were anal 
periodically in Fourier series. . . . 

Let us say here that the results of our 
computations show features which were, 
from the beginning, surprising to us. In- 

al, continuous flow of en- 
first mode to the higher 

modes, all of the problems show an en- 
tirely different behavior, Starting in one 
problem with a quadratic force and a pure 
sine wave as the initial potition of the 
string, we indeed observe initially [see fig- 
ures on next page] a gradual increase of en- 
ergy in the higher modes as predicted (e-g., 
by Rayleigh in an infinitesimal analysis). 
M ~ d e  2 starts increasing first, followed by 

the other mode 
ample, mode 2 decides, as it were, to in- 
crease rather rapidly at die cost af all other 
modes and becomes predominant. At one 
time, it has more energy than all the others 

most of its tune in 
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statistical relevance of time averaging for macroscopic observables. 
The averaging over initial conditions should not be of much consequence statisti- 

cally. Indeed, even if one assumes that the gas is simply a collection of hard spheres 
(with no internal structure), the gas still constitutes a dynamical system with somewhere 
on the order of degrees of freedom. Unless the initial state is very special or the 
time of observation very short, repeating an experiment ten or a hundred times should 
not have important consequences. In fact, a typical measurement lasts at least a few 
minutes; during such a time interval each molecule undergoes, at room temperature 
and normal pressure, about lo7 collisions. Hence the number of states through which 
the gas passes dynamically (in time) is much larger than that due to the repetition of 
the experiment. Of course, as one lowers the temperature or the pressure, the colli- 
sions become more rare, so the time of observation must be increased to avoid large 
fluctuations in individual measurements. 

Perhaps the most important averaging is the "coarse graining" involved in obtaining 
macroscopic variables. Two large numbers are involved in a typical measurement: the 
total number of degrees of freedom of the system and the number of degrees of freedom 
that are averaged together to obtain a macroscopic variable. The second number appears 
naturally in a system containing a large number of indistinguishable constituents. For 
instance, in determining the local density in a gas, one does not care about the trajectory 
of any single particle but rather about the average number of trajectories crossing a 
macroscopic volume at any time. Use of the laws of large numbers (see "A Tutorial 
on Probability, Measure, and the Laws of Large Numbers") in this context guarantees 
that, in spite of the fact that the underlying dynamics may be time-reversal invariant, 
macroscopic variables (almost) always tend to relax to their equilibrium values. In other 
words, because of the large numbers involved in specifying macroscopic variables, 
the macroscopically specified state of the system has overwhelming probability to 
evolve towards the equilibrium state, even if the microscopic dynamics is time-reversal 
invariant. Hence, an arrow of time exists at the macroscopic level even if it does not 
at the microscopic level. This frequently stated paradox of statistical mechanics is a 
straightforward consequence of the laws of large numbers. 

Confronting the Ergodic Hypothesis with Experiment 

Having discussed the types of averaging involved in a real experiment, let us 
reconsider the experimental circumstances under which classical statistical mechanics 
could be expected to work. Historically, statistical mechanics appeared in connection 
with the endeavors to study, for example, very nearly ideal gases. (In an ideal gas 
the molecules are free except for occasional elastic collisions with each other or with 
the walls of the container.) Its foundations were statistical (predictions were based 
on considering an ensemble of systems, primarily the microcanonical or the canonical 
ensemble), in spite of the efforts of Boltzmann and Maxwell to give it a dynamical 
basis by invoking the ergodic hypothesis. 

The fundamental assumption of statistical mechanics for an isolated system is 
the equal a priori probability on the hypersurface (in phase space) determined by all 
the conservation laws (Eq. 7). This probability measure defines the microcanonical 
ensemble. If the underlying dynamics is derivable from a Hamiltonian, by Liouville's 

FIGURES FROM THE FERMI- 
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theorem such a probability measure is invariant in time. Thus the only reason time 
averages could be different from ensemble averages would be a lack of ergodicity in 
the flow. In the case of a system consisting of only one species of indistinguishable 
particles, this potential difficulty is suppressed first by averaging over many initial 
conditions (so that even if the flow is not ergodic, the starting points may fall in different 
"ergodic" subregions) and second by measuring time-average values of macroscopic, not 
microscopic, variables. The chances that under these circumstances one would observe 
a difference between the predictions of statistical mechanics and experiment are very 
slim (recall the laws of large numbers), and indeed under these experimental conditions 
the predictions of classical statistical mechanics enjoyed great success. This explains 
the utter confidence of most physicists in the predictive power of statistical mechanics 
and their dismissal of the ergodic hypothesis as a technical, probably irrelevant detail. 

On the other hand, suppose one uses the theory to make predictions about a di- 
atomic gas, which even under the most simplifying assumptions has at least two species 
of indistinguishable degrees of freedom, say vibrations and translations. Without in- 
voking the ergodic hypothesis, I can think of no a priori reason for the contributions to 
the specific heat of these two types of motions being found equal in typical measure- 
ments. In fact, even if the ergodic hypothesis is true, it is possible that the coupling 
of these two types of motions is so weak that during typical times of observation they 
do not reach equilibrium with each other. Yet it was the assumption that the two types 
of motion are in equilibrium that led to the discrepancy between classical statistical 
mechanics and experiment. Therefore I feel that it is unjustified to rely upon the many 
successes of statistical mechanics to dismiss questions regarding its foundations. On 
the contrary, an understanding of the ergodic hypothesis and especially of the times 
involved for exciting certain degrees of freedom should be equally challenging for the 
mathematician and the physicist. 

Quantum Mechanics: A Case of Mistaken Identity? I would like to close this brief 
review of these complicated and long-standing problems with some speculations about a 
possible connection between the ergodic hypothesis and the necessity of using quantum 
mechanics at the microscopic level. First a few words about the blackbody radiation 
law. I have tried to emphasize the importance of measuring macroscopic averages, 
as well as that of particle indistinguishability, in obtaining agreement between the 
predictions of statistical mechanics and experiment. I think the case of the blackbody 
falls outside this realm. Consider a cubic lattice in D dimensions. At each site let 
there be a particle sitting in some anharmonic potential, attached through harmonic 
springs to its ID nearest neighbors. If the boundary conditions are periodic, the system 
consists of identical yet distinguishable (by site coordinates) particles. We could form 
macroscopic quantities by averaging over the positions or velocities of all the particles 
in a cube of macroscopic size and expect reasonable agreement with the predictions 
of statistical mechanics. Alternatively we could describe the system in terms of its 
normal modes and attempt to verify the classical prediction, namely, the Rayleigh- 
Jeans energy distribution shown in Fig. 2 (that is, the equipartition of the energy among 
all the normal modes). Many such studies have been performed numerically, the first 
being the celebrated 1955 work of Fermi, Pasta, and Ulam (see "The Fermi-Pasta-Ulam 
Problem"). It is always found that at sufficiently low energy density, the distribution of 
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energy among the modes of the lattice differs drastically from the statistical prediction 
and in fact depends upon the initial conditions. Obviously either these systems are not 
ergodic, or at least the times of thermalizing the different modes are much longer than 
a typical time of numerical integration. And no macroscopic averaging is available 
to save the day! It is also known that leaving the energy density fixed and refining 
the lattice (taking the continuum limit) increases the discrepancy (Patrascioiu, Seller, 
and Stamatescu 1985). Although such results have been accumulating for over thirty 
years now, they are not yet understood. Some say the systems are so close to being 
integrable that KAM tori or very slow diffusion rates occur in the phase space. Others 
claim that statistical mechanics should hold only in the thermodynamic limit (which 
is clearly not attainable numerically). Most physicists dismiss the whole story, since 
they "know" that statistical mechanics works in real life. I think this is a very narrow 
point of view: the problem being discussed is very much like that of the blackbody 
radiation law, and that was one of the failures of classical statistical mechanics. Is there 
a good theoretical (dynamical) basis for predicting the Rayleigh-Jeans distribution in 
classical physics, as the standard textbooks claim? Or are we pushing the statistical 
predictions in a domain for which there is no reason to expect them to hold? In "Does 
Equipartition of Energy Occur in Nonlinear Continuous Systems?" I describe some 
numerical experiments I have performed to test the validity of the statistical-mechanics 
predictions for a one-dimensional version of the blackbody problem and for the specific 
heats of systems with more than one species of degrees of freedom. Notably I found 
that, over the times of observation available in computer experiments, the systems failed 
to fulfill the ordinary expectations of an equipartition of energy. The same discrepancy 
has been found in many other numerical experiments. 

It is well known that the resolution of the above-mentioned experimental diffi- 
culties of statistical mechanics (specific heats and blackbody radiation) was found in 
abandoning the classical approach to physics in favor of the quantum one. As men- 
tioned in the introduction, this revolution has had an unqualified experimental success, 
although it has raised serious epistemological questions, which continue to haunt us 
more than sixty years after the advent of the quantum theory. I would like to give 
a brief outline of a heresy that I have advocated for a few years now (Patrascioiu 
1983), one directly connected to the ergodic hypothesis. As I mentioned earlier, if 
one contemplates a dynamical basis for statistical mechanics, one is faced with a real 
dilemma. The accepted formulation of the electromagnetic and the gravitational inter- 
actions demands that, in essence, everything in the universe interact with everything 
else. (This is so because of the long-range nature of these interactions.) In fact, the 
notion of an isolated object (or even system) is clearly an abstraction without any a 
priori physical basis, since ultimately everything is coupled to everything else through 
the electromagnetic and gravitational fields. All we can hope is either that the ergodic 
hypothesis is strictly false or that the times needed to excite certain degrees of freedom 
are so large that we can ignore them under some circumstances. In either case certain 
prejudices that have been passed from generation to generation should be abandoned 
and their bases be opened for investigation. For instance, in the absence of a dynamical 
calculation, there is no basis to claim that Planck's distribution for blackbody radia- 
tion is irreconcilable with classical electromagnetism. (In fact, the distribution found 
numerically and shown in Fig. 2 of the sidebar very much resembles Planck's law.) 

continued on page 278 
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Does 
Equipartition 
of Energy 
Occur in 
Nonlinear 
Continuous 
Systems? 

A ONE-DIMENSIONAL MODEL 
OF THE BLACKBODY PROBLEM 

Fig. 1. The blackbody problem was mod- 
eled as the interaction of a linear string 
(which represents the electromagnetic field) 
and two nonlinear oscillators (which repre- 
sent atoms in the walls of the cavity). Motion 
of both the string and the oscillators is re- 
stricted to the z direction and is described 
by the function z ( x ,  t ) .  

x = - 1  

T 
he celebrated work of Ferrni, Pasta, and Ulam was the first of numerous attempts 
to study the distribution of energy in nonlinear continuous media. These attempts 
have all been indirect in that the systems are simulated by lattices of particles 

interacting through nonlinear potentials. The results have consistently failed to support 
the classical point of view regarding equipartition of energy-and yet they have stirred 
little excitement in the physics community. Perhaps this is so for two reasons: (i) the 
systems analyzed may be subject to an infinite number of conservation laws (and thus 
may be effectively linear), so that the individual degrees of freedom are not coupled 
and equipartition of energy cannot occur; (ii) the results may simply be artifacts of the 
lattice simulations. 

Here I present some results from two of my own studies, the first of a one- 
dimensional model of the blackbody problem (Adrian Patrascioiu, Physical Review 
Letters 50(1983): 1879) and the second of a three-dimensional system that may give 
insight into the specific heats of systems with two species of degrees of freedom, such 
as the rotations and vibrations of diatomic molecules (K. R. S. Devi and A. Patrascioiu, 
Physica D 1 l(1984): 359). 

In the case of blackbody radiation, the continuous medium (the electromagnetic 
field) is linear. Nonlinearity is introduced into the problem through the interaction of 
the field with the atoms in the walls of the cavity. Let us investigate a one-dimensional 
version of this problem, two nonlinear oscillators (particles and nonlinear springs) 
interacting through a linear string (Fig. 1). The string represents the electromagnetic 
field, and the oscillators represent the atoms. This model has the advantage that the 
string can be treated exactly so that no spatial lattice is needed. 

The string and the particles move in the z direction only. The equation of motion 
for the string is 

and the equations of motion for the particles on the left and right, respectively, are 

and 

Here m is the mass of each particle, p is the string tension, and the nonlinear spring 
force F(z )  is defined by 

where 

These equations are written in units such that the length of the string is 2 and 
the speed of sound is 1. The most general form for the solution of Eq. 1 is z ( x ,  t )  = 
f (t + x )  + g(t - x). Substituting this general solution into Eqs. 2 and 3 yields a system 
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Nor is there any basis to the claim that the classical atom is inevitably unstable be- 
cause of the "ultraviolet catastrophe" (escape of all of the energy into the ultraviolet 
modes of the electromagnetic field, as required by the equipaxtition-of-energy principle 
of classical statistical mechanics). After all, maybe classical electromagnetism leads 
to a nonergodic flow (if the notion of ergodicity makes sense at all for a continuous 
medium) or maybe the diffusion of energy to the high modes is so slow that it has not 
occurred appreciably in the twelve to eighteen billion years since the big bang. That 
such slow diffusion is not a far-fetched supposition follows from some results obtained 
in the last few years. Since point charges have infinite self-energies, let us spread 
them by introducing a charged scalar (zero-spin) field. It has been shown rigorously 
that, in a certain gauge (axial), the system of coupled nonlinear equations describing 
the interaction of the classical electromagnetic field with this classical charged field 
has finite-energy-density solutions for all times. Moreover, these solutions retain their 
initial smoothness (number of derivatives). Using this latter property one can show that 
after an arbitrarily long time of evolution, an infinite number of normal modes of these 
fields are arbitrarily close to their initial energies (Patrascioiu 1984). Whereas there is 
no guarantee that this model captures the true physics in the universe, it seems hard to 
imagine a field whose modes therrnalize in a finite amount of time. 

So perhaps quantum mechanics is nothing more than classical statistical mechanics 
done the right way in a universe filled with particles interacting primarily via electro- 
magnetic and gravitational forces. If so, its mysteries should be understandable once 
the complicated Brownian process produced by particles constantly absorbing and emit- 
ting radiation is mastered. While this scenario may seem far-fetched to many, I think 
it arises inescapably from contemplating the foundations of statistical mechanics. It 
does not contradict the experimentally observed violation of Bell's inequality unless 
the latter persists for truly space-like settings of the magnets. It has epistemological 
value and would, for example, allow the computation of the fine-structure constant and 
its variation with temperature (Patrascioiu 1981). 

In conclusion, I think neither physicists nor mathematicians should close the book 
on the venerable problem of the ergodic hypothesis, and I guess some big surprises 
may be in store once the problem is better understood. H 

Adrian Patrascioiu, a native of Rumania, received 
his Ph.D. in theoretical physics from the Mas- 
sachusetts Institute of Technology in 1973. He then 
spent two years as a member of the Institute for 
Advanced Study and two more years as a research 
associate at the University of California, San Diego. 
Since 1978 he has been a member of the Physics 
Department at the University of Arizona, where he 
is now a Professor. His honors include a Sloan 
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Stanislaw M. Ulam Scholarship. 
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A Gamow Memorial Lecture delivered at the University of Colorado. Boulder, on October 5, 1982 

Reflections on the Brain's 
Attempts to Understand Itself 

choice of subject for this talk 
may seem strange, since I am 
not a psychologist, a physiolo- M 

gist, or a neurologist, merely a mathe- 
matician and an amateur, a dilettante, in 
the workings of the brain. However, it is 
fitting that I give such a talk in memory 
of the late George Gamow, a friend of 
mine. Though by training a physicist, he 
was able to make famous contributions in 
other sciences, such as astronomy and bi- 
ology, that interested him toward the end 
of his life. He was, like me, an ama- 
teur, a dilettante, in biology. Neverthe- 
less one of the most important discover- 
ies of recent times in that field is due to 
him. It was Gamow who first pointed out 
that ordered arrangements of four chemi- 
cal units-four "lettersw-along the DNA 
double helix, or chain, as he called it, 
might be codes for many biological pro- 

cesses, and that the codes for the manu- 
facture of proteins might consist of three- 
or four-letter "words." 

What I want to do today is talk about 
several of my own speculations, with 
some mathematical symbolism, concem- 
ing the operation of the brain. I believe 
that discoveries and breakthroughs within 
the next twenty years will lead to a bet- 
ter understanding of the mechanisms of 
the brain, of the processes of thought. It 
will not be a complete understanding- 
that would be too much to hope for- 
but it will give us some ideas of how the 
nervous system operates in lower animals 
and in humans. 

Mathematicians may help in reaching 
this understanding, although for the time 
being I think that 99 percent of the prog- 
ress will come from physiological and an- 
atomical experiments. However, mathe- 

matics can be useful, for it is clear that the 
similarities between electronic computers 
and the nervous system are of great im- 
portance. 

Another friend of mine, the late John 
von Neumann, was one of the pioneers 
in the planning and building of electronic 
computers. His book The Computer and 
the Brain, which was published posthu- 
mously in 1957, is still one of the most 
elegant and understandable general intro- 
ductions to the subject. I remember the 
discussions we had on how the advent of 
computers would enlarge the scope of ex- 
perimentation in mathematical and phys- 
ical sciences and about his specific inter- 
est in the partial analogies between com- 
puters, as they were planned in the early 
forties, and the processes of deductive 
thinking. We saw each other frequently 
at the time, either in Los Alarnos or in 
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Princeton, and we would marvel at the 
few physiological facts then known about 
the brain, such as the number of neurons 
it contains. That number was of the or- 
der of ten billion, and their interconnec- 
tions in the human cortex were known to 
be still more numerous. He would say: 
"Not only are there ten billion comput- 
ing elements, but each is connected to 
many others, one hundred maybe! And 
maybe even to one thousand in the cen- 
tral part of the brain!" Well now, forty 
years later, the number of interconnec- 
tions has been shown to be of the order of 
thousands, up to one hundred thousand in 
the central part of the brain. And the to- 
tal number of connections, of axons and 
synapses, is of order l0l4. So you see, 
in the recent past the purely anatomical 
and physiological knowledge has vastly 
changed. The locations of certain cen- 
ters in the brain and the differences be- 
tween its right and left halves are also 
better known. And today more inforrna- 
tion is being gathered through studies of 
the electromagnetic signals being emitted 
constantly by the brain. 

However, I do not believe that now, 
or even in the near or distant future, 
it will be possible to gain what might 
be called a complete understanding of 
the brain's operation. My belief rests 
on very important and strange results in 
pure mathematics. These results, which 
date from 1930, are associated mainly 
with the name of Godel, a mathematician 
who worked at the Institute for Advanced 
Study in Princeton. Godel proved a the- 
orem that says, roughly speaking, that in 
any mathematical system, any logical sys- 
tem, there exist statements that have sense 
but cannot be proved or disproved. So 
in every mathematical discipline one can 
conceive of at present, there are undecid- 
able propositions, finite statements that, 
starting from axioms, one cannot demon- 
strate or show to be false. 

Mathematics has a store of problems, 
some very old, whose solutions are not 
known. But it was assumed that, ul- 

timately, yes or no solutions would be 
found. That was the belief of Hilbert, one 
of the greatest mathematicians of the last 
hundred years. Then Godel came along 
and showed that such a belief is no longer 
valid, that there are statements that are 
undecidable. This fact is of great philo- 
sophical significance. And beyond that, 
it could be a sort of consolation for our 
inability to attain a complete knowledge 
of various real phenomena. 

So it is possible that some of the still 
unresolved mathematical problems are in 
principle undecidable on the basis of our 
present system of axioms. Many such 
problems are technically complicated, but 
let me give you one that is simple to state 
and understand. 

A prime number is an integer that is 
not divisible by any number except itself. 
The numbers 2, 3, 5,  7, . . . , 41, 43, 47, 
et cetera, are all prime. The Greeks knew 
that there are infinitely many prime num- 
bers. That is one of the oldest, greatest, 
and most beautiful discoveries in mathe- 
matics. Now certain pairs of prime num- 
bers, such as 5 and 7, 11 and 13, 17 and 
19, are called twins because they differ by 
only 2. The question is: How many twin 
primes are there, a fixed finite number or 
an infinity? Nobody knows the answer to 
this question, and it may be undecidable. 
I asked Professor Schmidt, a very famous 
number theorist, if he knew who first pro- 
posed this very old problem and whether 
he thought it might be undecidable. He 
did not know the answer to the former, 
and to the latter he answered, "One might 
not be able to decide whether it is unde- 
cidable! " 

I mention Godel's theorem to show the 
limitations of man's program to try to un- 
derstand everything, even in a restricted 
domain. Perhaps the scope of the hu- 
man brain is finite, or conversely, per- 
haps the growth of humanity, of its col- 
lection of brains, will, in terms of evolu- 
tion, continue indefinitely and may reveal 
new points of view. 

To continue the speculation on what the 

role of mathematics might be in the study 
of the brain, the time is not yet ripe to say 
its operation can be understood with ab- 
stract theories alone. But Gamow, who 
was perhaps the last great amateur in sci- 
ence, has shown us that it is possible to 
speculate-fruitfully, given some luck- 
on the great mysteries of nature. A Greek 
philosopher said that many are the won- 
ders of the universe, but the greatest of all 
is the human mind. And Spinoza said that 
it is better to begin with small and mod- 
est truths. Starting from these premises, 
I want to give you now a few exarn- 
pies of biological questions that I think 
mathematics has already proved some- 
what useful in answering, and how sim- 
ilar attempts and schematizations might 
possibly be of some use in partially un- 
derstanding the nature of human percep- 
tion. 

One such question concerns the mech- 
anism of recognition of external stimuli, 
say sights or sounds, and ultimately of 
ideas. Before recognition, there is per- 
haps discernment, discrimination. A pri- 
ori it seems easier to see the difference 
between two objects than their similarity 
or analogy. We need to map the tremen- 
dous web of connections in the human 
brain into overlapping classes. But be- 
fore we do this, here is an example of a 
mathematizable biological idea, one con- 
cerning the codes for the manufacture of 
proteins. 

Garnow's suggestion about the exis- 
tence of three- or four-letter codes for the 
constituent amino acids of proteins was 
almost correct. Many of the characteris- 
tics of living organisms are coded in very 
long sequences of four chemical units, 
which biologists call by the letters A, C, 
G, and T. Words are short strings of these 
letters. Finite sentences of several hun- 
dred words are codes for proteins, such as 
hemoglobins of various kinds. Today tens 
of thousands of these codes for proteins 
are known, and in some cases even the 
spatial forms of the proteins are known. 
A "reader" molecule goes along the DNA 
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"tape," reads the code, and deposits the 
information in other parts of the cell, in 
the ribosomes. This much is now under- 
stood. The functions of other parts of the 
long sequences, such as those called in- 
trons, are not yet understood, but they are 
not codes for proteins. 

Some biologists are beginning to spec- 
ulate on the importance of small differ- 
ences that have been found to exist be- 
tween the codes for a given protein in dif- 
ferent species. For example, cytochrome 
c, which is important for the transmission 
of electrical impulses in nerves, differs 
slightly from one species to another but 
remains the same within a species. The 
biologist Emanuel Margoliash has tried to 
establish an evolutionary tree based on 
the quantitative differences in cytochrome 
c codes, on the gradations among them. 

Mathematicians have studied in gen- 
eral the idea of comparing two elements 
a and b-two points in some space- 
by expressing the degree of their differ- 
ence with a quantity called a distance. 
This distance, which is usually denoted 
by p(a, b ) ,  should have the following 
properties. It should be positive definite: 
p(a, b )  > 0 if a # b and p(a, a )  = 0. It 
should be symmetric: p(a, b )  = p(b, a ) .  
And it should satisfy the triangle inequal- 
ity: p(a, c )  < p(a, b )  + p(b, c ) .  This last 
property means that to go from a to c is 
no more difficult than to go from a to b 
and then from b to c. If such a distance 
exists for all pairs of points in a set S ,  
then S is called a metric space. 

I have said that the elements of the ge- 
netic code are sequences of symbols for 
four chemical units. For simplicity's sake 
and without changing any essentials, let 
us consider sequences of just two sym- 
bols, 0 and 1. For example, one such se- 
quence x could be 01 10101 and another 
sequence y could be 10001 10. To get an 
idea of how much they differ, we want 
a distance p(x, y )  between x and y . Let 
x, be the ith symbol in x and y, be the 
ith symbol in y ,  where i = 1, 2, 3, and 
so on. One distance we might consider 

is the sum of the absolute values of the 
differences between xi and yi : 

Suppose x and y are both of length N and 
x = 010101.. . 0  and y = 101010.. . l .  
Then \Xi - yi 1 = N since they differ in 
every place. This is one distance used by 
mathematicians. Another is the so-called 
Euclidean distance, 

But our contention is that these dis- 
tances are not suitable for biological ob- 
jects. They are suitable for fixed objects, 
for sequences of symbols that are, so to 
say, rigid points of geometrical spaces, et 
cetera. But they are not well suited for 
flexible objects, such as strings of codes. 
To see this, consider the previous exam- 
ple of the two long sequences that dif- 
fered in every place. They are in one 
sense almost identical since by erasing 
one symbol in each sequence they be- 
come the same. Two changes make the 
sequences identical! But according to the 
previous definitions of distance, the dis- 
tance between them is N or \/N instead 
of just 2. 

Let us try another definition of a dis- 
tance. For example, we could define the 
new p as the minimum number of allowed 
changes that must be effected on one or 
the other sequence to make them identi- 
cal. What could these allowed changes 
be? One might be the substitution of a 
0 for a 1, or vice versa. Another could 
be the erasure, or the intercalation, of a 0 
or a 1 at any place in the sequence. One 
can prove that this p has all the properties 
that a distance should. 

A quantitative formulation of distance 
can be tried not only for the sequences 
of symbols in the genetic code but for 
a great variety of other objects. For ex- 
ample, one can try to define a distance 
between two sequences of musical notes, 
of acoustic signals, or between two draw- 
ings or sculptures, sets of points in two 
or three dimensions. 

It is my speculation that in the brain, 

or more generally in the nervous system, 
there must be a mechanism that, perhaps 
in a qualitative way only, determines a 
distance between a perception stored in 
the memory and a newly presented per- 
ception. Recognition of the newly pre- 
sented perception as known or unknown 
might mean that this distance is below or 
above a certain threshold. A perception 
insufficiently close to any of those already 
in the memory would be stored as a new 
perception. 

I want to talk about this sort of ap- 
proach to the recognition of visual per- 
ceptions. Let us take, for example, the 
case of recognition of two-dimensional 
pictures. My conjecture is that the brain 
uses several different distances to com- 
pare such pictures after they are regis- 
tered on the retina, recorded or recoded 
on several layers behind the retina, and 
deposited in the brain. 

What distance might be appropriate 
for comparing two two-dimensional pic- 
tures, that is, two sets of points in a 
plane? Let the two sets be A and B .  We 
are interested in some possible p(A,B) .  
Distances between sets have been stud- 
ied by mathematicians. One of these, 
the Hausdorff distance &(A, B ) is de- 
fined as follows. Let ps be the ordinary 
distance between two points. Given a 
point x in A, find the point y in B for 
which &(x,  y )  is a minimum; that is, find 
miny E~ p ~ ( x ,  y ) .  Do this for all x in A 
and then find the maximum of these min- 
ima, maXtE~ miny g~ ~ ( x ,  y ). Now find 
minx e ~ p ~ ( x ,  y ) for a given y in B and 
maxy EB minx-@, Y ). Then 

But this Hausdorff distance, like some 
of the distances mentioned in connec- 
tion with one-dimensional sequences, can 
be objected to in biological applications. 
Obviously, pn, as defined, depends on as- 
pects of A and B that are of little con- 
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sequence to recognition. For example, 
5 may be just a magnified version of A 
or congruent to A but rotated or trans- 
lated. In these cases the meaningful dis- 
tance should be very small. 

By repeating, or iterating, the idea of 
Hausdorff as follows one can arrive at a 
more satisfactory distance. For a given 
set, or picture, A, let us consider the class 
of A's that "look like" A, that, for exam- 
ple, are replications of A in various sizes 
or are obtained from A by some rotation 
or translation. Call this class of sets an 
impression of A and denote it by A. We 
proceed analogously for B and obtain a 
class of sets B. Now we may define a dis- 
tance between the impressions of A and 
B as follows: 

p(A, B) = max min pa(A, B )  
A E d  BEB 

+ max min m(A, B ) .  
B E B  A â ‚  

This is a more satisfactory measure of the 
difference between A and B. Needless to 
say, distances between three-dimensional 
objects can be defined analogously. 

One can define still other distances be- 
tween sets of points, or signals, in two 
or more dimensions. It is possible, for 
example, to express such a measure of 
similarity or dissimilarity as a distance 
between encodings of the set points in 
terms of orthogonal functions, such as 
those used in Fourier expansions. [See 
"An Ulam Distance."] 

I shall now describe a computer exper- 
iment Robert Schrandt and I did in the 
early sixties at Los Alamos. The experi- 
ment concerned the use of distances in the 
recognition of handwritten letters and in- 
volved the second conjecture that I want 
to present in this talk, one about the role 
of impressions, or examples, in the pro- 
cess of recognition. 

The idea of the experiment was to pro- 
vide the computer with a great many 
handwritten examples of the letters a and 
b-actually with a great many sets of co- 
ordinates of points outlining the letters- 

and then make the computer decide if a 
new example was an a or a b. It would 
have been prohibitively tedious to pro- 
vide, say, 512 examples of each letter. 
(Powers of 2 are convenient when dealing 
with computers; hence the number 5 12.) 
Instead we used a stratagem by which the 
computer itself generated the examples. I 
remembered a proof of mine that there 
exist on the interval, and analogously on 
spaces of higher dimension, two functions 
f and g such that any continuous func- 
tion can be approximated by one of their 
compositions-fg , f fg  , fg f  , fggf , fsfe, et 
cetera. So we gave the computer only one 
example each of a and b and also two 
transformations of each, which served as 
f and g. By programming the computer 
to produce compositions up to the order 
of 10 of the transformations, we obtained 
512 examples each of a and b. When 
displayed on a screen, these looked in- 
deed like various handwritten versions of 
the original a and b. Some were slightly 
tilted, others appeared to have been writ- 
ten by a shaky hand, and so on. Then the 
computer was asked to decide whether a 
new handwritten sample was an a or a 
b by computing the Hausdorff distances 
between the sample and the examples it 
had created. The computer's decisions 
were correct in more than 80 percent of 
the cases! Of course, the same method 
works in the case of more than two let- 
ters or other standardized figures. 

The conjecture is that in the brain, in 
the visual system and in the memory, 
perhaps only a few visual perceptions 
are permanently stored, and, when pre- 
sented with another, the brain produces, 
for comparison, many deformations either 
of what is in the memory or of what is 
presented. If this is so, the storage capac- 
ity of the memory would be enormously 
enhanced. 

At present one can only speculate about 
the mechanisms by which the brain might 
produce the deformations. Some are ob- 
vious, such as a tilt of the head or a 
change in size. One can also only spec- 

ulate about what distances or how many 
are used in the decision. One may also 
speculate that a similar mechanism di- 
rects the recognition of objects within the 
body. Could it be that the antibodies 
produced by the immune system have an 
analogous way of recognizing antigens? 
Again, deformations might be used to 
produce a large number of examples for 
such discrimination and recognition. 

The next higher stage in the operation 
of the brain might be a more complicated 
analysis of impressions. Instead of con- 
sidering impressions of single objects, the 
brain might study a succession of two or 
three, even a "movie" of ten or more. 
Combined with recognition of the passage 
of time, this could lead to development 
of primitive logic or elementary reason- 
ing, perhaps in the form of the statement 
post hoc ergo propter hoe (after, therefore 
because) or its reverse ante hoc ergo qua 
hoe (before, therefore as a reason for). 

Our comprehension of less elementary 
learning should involve the mathemati- 
cal idea of measuring complexity. In re- 
cent years quite a number of mathemati- 
cians, including Jan Mycielski and Andre 
Ehrenfeucht, both professors at this uni- 
versity, have done some very interest- 
ing work on this subject. With proper 
changes some of their results could be ap- 
plied to investigating the operation of the 
nervous system. 

It is clear that one of the most irnpor- 
tant mysteries about the brain is the or- 
ganization of the memory, including the 
means of access. As I surmised earlier, 
some form of memory must exist in the 
visual, auditory, olfactory, and immune 
systems-and even in the system for dif- 
ferentiation itself. A mechanism for pro- 
ducing many examples from one would 
certainly seem a very efficient way of 
using the storage capacity of the visual 
and auditory memories. In the course of 
evolution, special devices, or tricks, must 
have developed to increase the scope of 
recognition and of the complementary 
process of registering perceptions as new. 
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Let me give an example of a trick for 
efficient use of a computer. Suppose we 
have stored in its memory a great many, 
say lo6, eight-digit numbers arranged se- 
quentially and want the computer to de- 
cide whether a given number is among 
those stored. The computer can do this 
extremely fast by comparing in succes- 
sion the digits from first to last. Sup- 
pose now that we want the computer to 
decide whether the given number differs 
from any of the stored numbers by, say, 
1 in any of the eight positions. We might 
program the computer to do this by de- 
ciding whether any of the lo6 numbers 
in its memory is that close. That would 
be a very lengthy operation. There is a 
much better way to proceed, a way that 
requires only sixteen times the effort re- 
quired for the computer to decide whether 
a single number is among those stored. 
We first program the computer to produce 
from the given number the sixteen num- 
bers that do differ by 1 in any of the eight 
positions and then to decide whether any 
of the sixteen is among those in its mem- 

ory. 
This example illustrates that a mecha- 

nism for producing auxiliary perceptions 
for comparison with perceptions stored in 
the memory would be an advantageous 
acquisition of the nervous system. So 
also would a mechanism for producing 
variations of what is stored in the mem- 
ory for comparison with external stim- 
uli. Perhaps a physiological or anatom- 
ical arrangement might serve such func- 
tions. Clearly these are merely guesses as 
to special characteristics the nervous sys- 
tem may have acquired in the course of 
evolution. 

An Ulam Distance 
by William A. Beyer 

s tan had often referred, as he did in this lecture, to a 
distance between sets based on an encoding of the set 
points in terms of orthogonal functions. However, he 

had never explicitly defined such a distance. I do so now to 
honor the originator of so many seminal ideas. 

Let A and B be two-dimensional finite sets enclosed in 
a square. Let n~ and n~ be the number of points in A and B ,  
respectively. Let {/, j} be a complete set of orthogonal functions 
on the square, such as two-dimensional Fourier trigonometric 
functions. Define p,fj and 4, the encodings of A and B 
mentioned above, as follows: 

and 

Then /if, and p f  are functions on the no 
of the plane. Finally, let p(f1,f2) be s selected distance 
between such functions. Then P M ,  pf,) is a 
the sets A and B ~ a n  alternative to the H 
defined in the lecture. 
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SEQUENCE ANALYSIS
Contributions by Ulam
to Molecular Genetics

by Walter B. Goad

L
ord Rayleigh once introduced a
key idea with “It is tolerably ob-
vious once remarked. .“ Yes,
I think now, that is just how

it was—Stan Ulam providing us with a
steady stream of ideas and observations
“tolerably obvious” only in retrospect,
and then striking in the way they be-
came integral to one’s tangible world of
evolved and evolving forms and actions.
Here I would like to sketch ideas de-
veloped during the sixties and seventies
as an avalanche of detail, still growing,
gathered about the way sequences of nu-
cleotide bases in DNA encode instructions
for development and propagation of liv-
ing organisms. Stan showed us a very
general way of thinking precisely about
relationships among sequences, in par-
ticular, how to devise quantitative mea-
sures of relationship that. together with

the computer, are of immense help in fer-
reting out meaning in the very great quan-
tities of data now pouring forth.

I met Stan soon after arriving in Los
Alamos at the end of 1950. I came os-
tensibly to finish a thesis begun at Duke
under Lothar Nordheim, who had arrived
several months earlier while I stayed in
Durham awaiting security clearance. At
last a telegram came from Carson Mark
that read, “Your clearance not available.”
An anxious telephone call established that
the “not” had been garbled in transit from
“now.” I was immediately swept up
in the thermonuclear program, kept busy
with the rest dissecting schemes and de-
signs, and sometimes new phenomena,
usually standing around a blackboard. In-
troducing the right factors, right at least
in order of magnitude, was both vital
and enjoyably competitive, laced with

humor-esoteric, malicious, or plain—
and an occasional flash of ego. The key,
of course, was to discern the dominant
phenomenon and to estimate its role in
the matter at hand. One always had a
feeling, almost visceral, as to how deeply
an argument was rooted in the web of
our knowledge of physics and mathemat-
ics. Stan habitually turned things to view
from a variety of directions, much as he
would see an algebraic structure topolog-
ically, and vice versa, and often supplied
the connection that dispelled a gathering
fog.

A round 1960 Jim Tuck invited Leonard
Lerman, who was in the thick of the

gathering revolution in biology and then
at the University of Colorado, to visit
Los Alamos. The “phage group” gathered
loosely around Max Delbruck had estab-
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lished a mode of analysis that is still driv-
ing the biological revolution: Changes
in a single DNA molecule are amplified
by biological reproduction, usually in a
microorganism, to the macroscopic level;
there the consequences of those changes,
however ramified, can be studied with the
resources of physics and chemistry. The
amplification is made possible by an im-
mensely powerful, and growing, armory
of molecular tools based on enzymes that
carry out specific operations on specific
DNA'S. As we grasped those ideas from
Leonard and began to see the clarity and
concreteness with which the mechanisms
of life would emerge from such analysis,
many of us were galvanized. We soon
responded in a way typical of the cul-
ture, organizing a seminar, hungrily seek-
ing out the many aspects of the subject.
As I recall, the seminar continued through
the sixties and early seventies with a vary-
ing membership but with Stan, Jim Tuck,
George Bell, and me as regulars. We
were frequently visited, and enormously
encouraged, by Ted Puck, who has built a
distinguished school of molecular and cell
biology at the University of Colorado and
who was, and is, exceedingly optimistic
about the contribution systematic theory
can make to biology.

A quick tour of systematic theory in-
evitably would start with Darwin’s grand
synthesis. For physicists a key way point
would be the publication in 1944 of Er-
win Schrodinger’s short book What Is
Life?, which equates that grand question
with one congenial to physicists: What
generates “negentropy,” the high degree
of order that living systems are continu-
ally creating from the environment? Ever
since, theorists of all kinds have looked to
the formulation of some powerful phys-
ical theory of life. Short of that, what
we do know is that living systems escape
from the determinism of ordinary chem-
istry by interposing molecular adaptors to
control molecular interactions. An exam-
ple is provision by the complex protein
structure of hemoglobin of an effective

interaction between 02 molecules that is
completely unrelated to their interactions
as free molecules: Within a hemoglobin
molecule up to four 02's bind at dis-
tinct sites and thus effectively stick to-
gether. Furthermore, three or four stick
more tightly than one or two. So, where
there is much oxygen, four are tightly
bound; where there is little, departure
of one causes the others to more eas-
ily depart. Invoking the adaptor prin-
ciple, Francis Crick predicted the exis-
tence of what are now called transfer
RNA’S—small RNA molecules, a particu-
lar species of which adapts each three-
base codon to molecules of a particular
amino acid. A Zen-like consciousness of
physical necessity—for the way in which
electrons and nuclei, and thus atoms and
molecules, do what they must—leads first
to puzzlement at living systems and then
to resolution: Molecular adaptors free the
logic of higher levels of organization to
adopt and express a logic of their own,
exploiting, not circumventing, physical
necessity.

Proteins and RNA’S provide an array of
complex and highly specific adaptors, and
their structures are encoded in sequences
of nucleotide bases in DNA. To a large ex-
tent the double-helical structure of DNA

wraps the information-conveying part of
the DNA into a protected interior and so
in the main removes chemical constraints
on the propagation and selection of se-
quences.

Working on DNA as a substrate, evolu-
tion has produced the marvelously com-
plex web of living systems we see today.
The working hypothesis, to which no ex-
ception is yet known, is that all of the
information for propagation and develop-
ment of individual organisms is encoded
somehow in the sequence of four bases
adenine (A), thymine (T), guanine (G),
and cytosine (C) along the DNA molecules
(or, in some cases, RNA molecules) that
compose its genome. The “somehow” in-
cludes the great triumphs of the past two
decades, the present frontiers of molec-

ular biology, and, undoubtedly, a great
deal that we do not now even glimpse.
Less than a decade after Watson and
Crick determined the structure of DNA, re-
searchers at the laboratories of Nirenberg,
Khorana, and Ochoa fully worked out
the “genetic code” by which the base se-
quences of particular segments of DNA—
genes—are translated into sequences of
amino acids that fold up as particular pro-
teins. For a few years many people felt
that, in principle, DNA function was now
completely understood. But in the mid
seventies methods were worked out for
determining sequences of bases in DNA,

and it amost immediately emerged that
not even the sequences that are translated
into proteins are simple, continuous cod-
ing sequences. The last few years have
seen the discovery of a great many dis-
tinct “signals” that control the replica-
tion of DNA and the expression of genes.
However, it is not yet known how the ac-
tion of those signals is coordinated, as it
must be, to yield the patterns seen dur-
ing reproduction and development. On
the other hand, an outline is emerging of
the organization within DNA of repetitive
sequences, which make up a substantial
fraction of the genome in higher organ-
isms. That organization may or may not
have signaling capabilities, but it is al-
most surely important in evolution. Per-
haps most striking of all is the grow-
ing knowledge of phenomena—such as
the mobility and duplication of pieces of
DNA and its rearrangement-that intro-
duce into the genome a degree of dy-
namism far beyond what classical genet-
ics had led us to suspect.

Most of this was yet to come in the
late sixties, when the amino-acid se-

quences of a few proteins were the only
biological sequences known. However, it
was already clear that the information on
which a cell acts is encoded in sequences
of bases, and the question of how to char-
acterize relationships among sequences
hundreds or thousands of bases long was
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at hand. With his almost visceral feel-
ing for representation of natural phenom-
ena by general mathematical structures,
Stan immediately framed the question in
terms of defining a distance between se-
quences or, more generally, of defining a
usable metric space of sequences (Ulam
1972). This he did by considering cer-
tain elementary base changes by which
one sequence might be transformed into
a second: Replacement of one base by an-
other and insertion or deletion of a base.
(Combinations of these changes can result
from errors in DNA replication, chromo-
somal crossover during meiosis, insertion
of viral or other D N A, or the action of
mutagens.) Obviously, one sequence can
be transformed into another by more than
one set of elementary changes, as shown
in the accompanying figure. What Stan
proposed was to compute a measure, a
“size,” for each such set and to define as
the distance between the sequences the
minimum value of the measure.

In simplest form the measure is a sum
of weights, one for each of the elemen-
tary changes that compose a transfor-
mation set. The set corresponding to
the minimum measure—the distance be-
tween the two sequences-can be inter-
preted as the minimal mutational path by
which one sequence could have evolved
from the other. In 1974 Stan, with Bill
Beyer, Temple Smith, and Myron Stein
applied the idea of distance to discern-
ing evolutionary relationships among var-
ious species from variations in the amino-
acid sequences of a protein they all share.
Also in 1974 Peter Sellers, after hear-
ing Stan talk at Rockefeller University,
proved that such a distance can indeed
satisfy the conditions of a metric, the
most demanding of which is satisfaction
of a triangle inequality. Without that,
one’s sense of what it means for some
among several sequences to be close and
others distant would be quite unreliable.

Finding the distance between two se-
quences of length N by brute force, that
is, by computing the measures for all the

possible sets of elementary changes, re-
quires on the order of N ! computer op-
erations. An algorithm for determining
the distance in N* operations was dis-
covered by the biologists Saul Needleman
and Christian Wunsch in 1970 and inde-
pendently by Sellers in 1974. Essentially,
the algorithm proceeds by induction: The
minimal set of changes needed to trans-
form the first n bases of one sequence
into the first m bases of the other is found
by extending already computed minimal
transformations of shorter subsequences,
then n and m are increased, and so on
until the ends of the sequences have been
reached.

By the end of the 1970s, it was ap-
parent that DNA sequencing would take
off, and that investigators from all areas
of biology, biomedicine, and bioagricul-
ture would increasingly apply it to their
particular research problems. It was also
obvious that computer manipulation and
analysis of sequences, much of it flow-
ing from Stan’s idea for a metric, would
play an increasingly large role in exploit-
ing the information. Mike Waterman had
joined Beyer and Smith in working on se-
quence analysis, and Minoru Kanehisa, a
postdoc from Japan, and I made genetic
sequences and their analysis our princi-
pal preoccupation from then on. In 1982
a consortium of federal agencies funded
GenBank, the national genetic-sequence
data bank. Los Alamos collects and or-
ganizes the sequence data, and Bolt Be-
ranek and Newman Inc. distribute them
to users. By the end of 1986, DNA se-
quences totaling about 15 million bases,
from several hundred species, had been
deposited in GenBank.

In the 1980s a series of problems in
sequence comparison have been faced

with varying degrees of success. One
problem now solved concerns global ver-
sus local closeness (closeness, that is,
in the sense of a distance between se-
quences). Often of interest are sequences
that are close to each other although em-

DISTANCE BETWEEN
DNA SEQUENCES

Consider the two short DNA sequences
GTTAAGGCGGGAA and GTTAGAGAGGAAA. As
shown in (a), one of these can be trans-

formed into the other by four base substi-

tutions. If the “weight” assigned to a base

substitution is x, then the “measure” of the

set of changes in (a) is 4x. Alternatively, as

shown in (b), one sequence can be trans-

formed into the other by two base inser-

tions, two base deletions, and two base sub-

stitutions. Since base insertions (deletions)

occur less frequently than do base substitu-

tions, the weight y assigned to an insertion

(deletion) is different from that assigned to

a substitution; in particular y is assigned a

value greater than that of x. The measure of

the set of changes illustrated in (b) is 2x+4y,

which is greater than 4x. The distance be-

tween the two given sequences is defined

as the minimum of the measures calculated

for all possible sets of elementary changes

that transform one sequence into the other.
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bedded in otherwise unrelated longer se-
quences. Peter Sellers first introduced
the important distinction between local
and overall closeness in 1980. A mea-
sure suited to the local problem (essen-
tially the number of weighted changes per
base, formulated so that the algorithm of
Needleman, Wunsch, and Sellers can still
be used) was introduced in slightly dif-
ferent forms by Kanehisa and me in 1982
and by Smith and Waterman in 1981.
Another class of problems stems from
the sheer quantity of data-examining 15
million bases, even with an N 2 algorithm,
requires hundreds of hours on a Cray.
That problem has been reasonably suc-
cessfully dealt with by presecreening se-
quences for likely candidates for signif-
icant relationships. A table of pointers
to the locations of short subsequences (a
simple hash table) is created and searched
for short matching sequences. At this
writing the method is being implemented
with new hardware features of the Cray
XMP. For a general review of sequence-
comparison algorithms, see Goad 1986;
for a review that emphasizes mathemati-
cal aspects, see Waterman 1984.

Devising a metric appropriate to the in-
vestigation at hand is probably not a prob-
lem that can be precisely posed, much
less solved. A simple metric in which
each elementary change is given the same
weight may well suffice when the ob-
ject of study is a virus under great pres-
sure to preserve a small genome. But
such a metric may show misleading re-
lationships when applied to segments of
DNA from a more complicated organism,
as Fitch and Smith found in 1983 for
mammalian hemoglobins. Some relation-
ships may depend on similarities in three-
dimensional structure of DNA that are pre-
served through a set of sequences, as may
be the case for the elements that con-
trol initiation of expression of particular
genes. To discover such relationships,
one needs a measure of structural simi-
larity, expressed of course in terms of se-
quences. That problem is just beginning
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to be faced. A good sense of the problem,
and of the limitations of sequence com-
parison, is given by analogy to another
idea of Stan’s. He proposed that percep-
tion, and thought itself, be considered in
terms of a metric space. This frames the
question: How is the distance between
the visual fields corresponding to, say,
two tables—which will vary greatly with
circumstances-computed in our brains
so that it is small compared with the
distance between the visual fields corre-
sponding to a table and a chair? Clearly
the metric appropriate to a particular class
of problems depends on the mechanisms
one hopes to discover or illuminate.

Mathematical analysis has spread into
nearly every corner of molecular

genetics; its spread and development is
still accelerating. In early 1986 the De-
partment of Energy took the initiative
in seriously exploring sequencing of the
complete human genome, some 3 billion
bases. In that project computerized man-
agement and analysis of information will
play a key role.

Speaking of sequence analysis, Gen-
Bank, and all that, Stan once said, “I
started all this.” Yes. ■
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a memorable memo 
I n 1947 Los Alarnos was in the throes 

of its postwar reorganization. Admin- 
istration and Services, or A&S for 

short-a predecessor of Mail and Rec- 
ords-was wont to distribute a large num- 
ber of mimeographed memos, in purple 
ink on plain white paper, to keep Labora- 
tory members abreast of the latest devel- 
opments. 

One December day in a T-Division 
office, two individuals busily compiled 
a list of numbers, which they labeled 
"A&S Memorandum no. 10,742" and 
gave to a secretary to type for dissemi- 
nation through the A&S channels. 

Needless to say, once distributed this 
document caused a certain amount of 
stir and puzzlement, and at a Laboratory 
meeting an outraged member of the di- 
rectorate suggested the perpetrator should 
be fired, which would free some much 
needed housing. - 

By and by the memo found its way 
to the AEC in Washington where it got 
a much better reception: A highly en- 
tertained Commissioner remarked that it 
was "The best thing to come out of Los 
Alarnos yet!" 

The culprits were J. Carson Mark (T 
Division Leader) and Stan Ulam (Group 
Leader1 , - 

Carson admitted later that their list had 
been hastily drawn and contained two 
'flaws": It was confusing to begin with 
"a dozen" for the number 12, and they 
altogether overlooked the number 10. 
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Sub Rosa 

fter dinner one evening in 1965, 
Stan in a playful mood dictated 
to Francoise all in one breath, so 
to speak-without corrections or 

rewritesÃ‘th following "top secret" skit, 
which was not meant for public consump- 
tion. When asked what was to be done with 
it, he replied, "File it away and posterity 
will decide." It was filed and forgotten and 
no one else ever knew of its existence until 
it resurfaced recently. Now "posterity," in 
the form of the editors of this magazine, has 
decided to print it as a perfect example of 
Ulamian humor, which, built on a great sense 
of ridicule and classical erudition, was con- 
cise, incisive, and capturing of the essence. 

Sub Rosa, which Stan called a p l a y ~ a s  
i f  he had meant to dictate a five-act opus!- 
was his way of making fun of the horrendous 
nuclear debates that had filled the councils of 
state, civilian and military, and the nation's 
press and airwaves since the advent of the 
atomic age. More specifically, the skit repre- 

sents a few o f  the scientists and some of the 
political and scientific issues that surfaced 
after the frantic bomb tests of 1961 and 1962 
and the Test Ban Treaty of 1963, which lim- 
ited testing to underground. 

It would not take a great reach of imag- 
ination to transpose this into the present. 
Twenty years later the arguments and even 
some of the people are still the same! 

The footnotes are Stan's own and self- 
explanatory, but to heighten a younger and 
less familiar generation's appreciation of the 
satire, the following remarks and the num- 
bered endnotes will we hope prove helpful. 

Sub rosa (literally under the rose) refers 
to an alleged ancient French custom of hang- 
ing a rose over a council table to swear those 
present to secrecy. 

The principal characters engaged in a 
three-sided conversation are Bethe, Teller, 
and Ulam, thinly camouflaged as Benefacius, 
Totilus, and Ulfilas. Benefacius is a play 
on the name Bonifacius, a German saint; 

Totilus was a belligerent king of the Ostro- 
goths; and Ulfilas was a bishop of the Goths. 
(Note the reference to chess, a favorite game 
of Ularn's.) 

Rounding the cast, we have Gregarius, 
the geophysicist David Griggs, a great ad- 
mirer of Teller and for a while chief scientist 
for the Air Force; Fos-terasis, John Foster, 
then director of Livermore, known as an out- 
spoken hawk; and Vertihumerus (Stan's Latin 
for green horn), an anonymous young man. 
The scientist with a lapsed Q clearance is 
the Russian-born physicist George Gamow, 
whose speech was characteristically laced 
with misplaced articles. 

There also appear allusions to Herman- 
dus Canaan, read Herman Kahn of the Rand 
Corporation, a well-known California think- 
tank; Libius, Willard Libby, an AEC Commis- 
sioner; and Manilius, John Manley, secretary 
of the General Advisory Committee to the 
AEC in its early years. 

Enjoy! 
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Sub Rosa 

The trialogue takes place in Limbo, which explains the use of Latin and other classical 
references. 

BENEFACIUS: I have just read an interesting article in Life, but I think it contains 

A Trialogue some technical mistakes. For example, the data on- 

Dramatis personae' 

BENEFACIUS, a physicist 

TOTILUS, a weapon scientist 

ULFILAS, a chess player 

TOTILUS: Many wonderful things can come from testing. Think of obtaining oil from 
shale, for instance. 

BENEFACIUS: One mistake I noticed- 

TOTILUS: Excuse me, may I say that the pressure obtained at the site of an under- 
ground explosion can produce new minerals, perhaps even diamonds. Harbors could 
be built in Alaska, in Greece. There is oil to be squeezed out in Texas. 

BENEFACIUS: It is not correct to say- 

TOTILUS: Very small, economical-I mean c h e a p b o m b s  can be tested for tactical 
GREGARIUS, a former Air Force scientist use in small wars. 

ULFILAS (standing up, having kept quiet with some difficulty)': This article describes 
in dramatic tones the horribly difficult decision the President has to make-as usual in 

VERTIHUMERUS, a young scientist solitude-after weighing the pros and cons of testing. This comes at the end. If one 
reads the beginning and the middle, there seems, however, no question as to what the 

A SCIENTIST WITH A LAPSED Q CLEARANCE decision has to be. The author makes it clear what anybody in his right mind would 
decide. He describes the tragedy of the moratorium. Since the Russians made so much 

CHORUS OF SPACE SCIENTISTS progress in testing after the end of the moratorium, it would have been much better if 
they and we had tested all the time. 

AN ECHO OF DOD CHORUS Isn't it possible that the Russians, with their devilish cleverness, might really want 

A CHORUS OF SHERWOOD~~] SCIENTISTS 

AN INVERTED JACOB'S LADDER 

us to concentrate on little improvements of warheads instead of working on the really 
militarily important developments, like rocketry? 

CHORUS OF SPACE SCIENTISTS: 

The gap exists, but it is narrow. 
If we miss the moon, we go around the sun. 

How can we lose! 

ECHO FROM DOD CHORUS: 
The credible second-strike capability is firming up. 

The stable deterrent might be upgraded. 

ULFILAS: Unfortunately both sides have an incredible first-strike capability. 

CHORUS OF FEGATELLO SCIENTISTS: 
Not all is lost, 

because we've got- 
or have we got?- 

*With apologies to the spirit of Anatole France, who wanted to write a story so named. 
t A n y  lack of resemblance to real persons is purely coincidental. 
$Greek for strange light. 

Â§Italia for little liver.['] 
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a neutron bomb, 
and they have not. 

ULFILAS (to himself): Produce neutrons or get off the pad! 

TOTILUS: Peaceful applications are very important. We might be accused of blood- 
thirstiness otherwise. 

There is also the possibility that if we work steadily and vigorously some of the old 
ideas which did not work might be revived. Something close to the proposals which 
were proved to be impossible can be revised to show that I was right. 

A body of scientists must have something to do. Si vis bellum para pacem.* 

BENEFACIUS: There has been criticism of Los Alamos for working on peaceful aspects 
like nuclear rockets or the Sherwood project. 

CHORUS OF SHERWOOD SCIENTISTS: 

We have twelve approaches 
to the problem of peaceful fusion. 

Six are good and two might 
even be promising. 

Neutrons abound; the 
instabilities are small. 

A breakthrough is just beyond the 
horizon. 

TOTILUS: As I mentioned to some of you ten years ago, one should think of a new 
idea. 

ULFILAS: I mentioned that some twelve years ago. 

TOTILUS: Production of all fissionable material must be enthusiastically increased. 

ULFILAS: Why? Isn't our stockpile infinite? Although I agree that there are degrees 
of infinity~countable and noncountable. 

It seems to me that the interesting concept of "overkill" is attacked by people on the 
left because it is wasteful, i.e., not economically sound, whereas people on the extreme 
right support it for psychological reasons-it gives them a feeling of virility, which 
they otherwise miss. 

TOTILUS: According to the calculations of my friend Hermandus Canaan, with whom 
I discussed the subject in detail, if only fifty to eighty million people are killed, the 
country can rebound vigorously in forty to fifty years, and the forward march of the 
consumer economy will resume. 

Shelters are important. Libius has written that one can improve one's chances of 
survival by a million, or maybe as much as a billion. 

ULFILAS: How? If this chance after improvement should be of the order of one, then 
it must before have been only one in a million or one in a billion. How does that jibe 
with sixty million people being killed, which is one-third of the population? 

"If you want war prepare peace. Really, Si vis pacem para bellum (If you want peace prepare war).r3] 
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TOTILUS: You see, that all depends. If we improve our weapons, the chances might 
be much greater. A toothbrush can be improved indefinitely, as, I believe, Manilius 
said.141 

GREGARIUS (scolding everybody vigorously except Totilus, to whom he makes a mild 
reproach for talking too much): My committees state almost unanimously that our 
posture has deteriorated and needs considerable firming up both front and rear. 

TOTILUS: One will never be sure without testing. 

BENEFACIUS: One should really make more calculations. 

TOTILUS: Perhaps you remember we discussed this fourteen years ago. 

ULFILAS: A report which I wrote sixteen years ago mentions that very explicitly. 

FOS-TERASIS: We have had very bad luck recently. According to the laws of proba- 
bility it cannot continue indefinitely. Given enough testing, progress will be assured. 

ULFILAS: I doubt it. 

BENEFACIUS: That is right. 

TOTILUS: My friends from the Brand* Corporation have computed that the danger 
of fire storms and fallout has been vastly exaggerated. Also, people who try to prevent 
testing exaggerate the effects of the tidal waves. One could have a million megaton 
explosions without the waves reaching the Rocky Mountains. I do not know where the 
real danger point comes, but many more explosions can safely be made in a war than 
people think at present. 

BENEFACIUS: That is not right. 

ULFILAS: Somehow these things seem to me not good. I agree that we must be 
strong, but it is as futile not to test as to test. Our only cleverness recently was to 
induce the Russians to test underground too. 

VERTIHUMERUS: It is not futile to test, and it is not futile not to test. I keep my 
guarded pessimism. 

BENEFACIUS: Why should the neutron bombs lead to such a great advantage? I 
agree to a possible small advantage. In the wars of the eighteenth century there were 
nice close formations marching with officers and drummers in front. A neutron bomb 
would have been useful then; it could have killed the whole group without ruining the 
wristwatches of the officers. 

ULFILAS: I don't think there were any wristwatches in those days. 

BENEFACIUS: That is right. 

TOTILUS: Small bombs would enable one to have a lot of small wars. If one should 
exercise additional self-restraint, these might be contained. And perhaps, even in the 
eighteenth century a Napoleon would not have been possible. 

'German for conflagration 
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AN INVERTED JACOB'S LADDER appears, and a Brand Corporation scientist starts 
climbing it to advocate confining and concealing nuclear explosions underground. 

CHORUS OF SPACE SCIENTISTS: 

Facilis descensus Averno 
Sed revocare gradum superasque 

evadere ad auras, 
Hoc opus hie labor est.* 

ULFILAS: That must mean that it is more difficult to conceal testing up in space than 
underground. If you are quoting Virgil, as you seem to be doing, you must know the 
end of the story.['] 

I must say that my main worry is not war as a result of premeditated action, but 
accidents. If the probability in any one year is alpha, then- 

TOTILUS: Accidents, like mutations, are not always bad. You forget, Ulfilas, that 
there is perhaps a small probability beta-(catching himself) not so small, I should like 
to say-that something good can come out of it. 

ULFILAS: It seems to me that we should all go more into space. This might be a 
tremendous distraction for all of us, for many reasons. 

I am in favor of hyperbolic orbits and space research. A lot of spare energy can go 
into it. It stimulates the economy as well, and the rivalry is perhaps less dangerous 
there. 

TOTILUS: I like parabolas myself. It is on these, you see, that you can show strength 
and deliver bombs. 

BENEFACIUS: I like ellipses. They are useful for communication satellites and weather 
prediction. 

TOTILUS (angry for not having said that himself, especially since elliptical orbits can 
also be usedfor ejecting clean bombs): I might agree to that. They might be important 
for the uncontaminated countries. 

~CIENTIST WITH LAPSED Q CLEARANCE (looking upon them with pity): 1 too have 
consulted for many years. But now I am studying the astronomy and the biology. Is 
better. Come, Ulfilas, let's go have drink. Finis 

*It is very easy to descend to hell, but to retrace one's steps and reach the upper regions, that's the 
task, that's the t0il.1~~ 

Livermore, of course. 
12] Sherwood was the name of the research program at Los Alamos on controlled fusion. 
131 A Roman proverb. 
L41 John Manley actually said that a toothbrush can not be improved forever. 

From Book 6 of Virgil's Aeneid. 
161 The significance of this reference to "the end of the story" is not clear. 
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CONVERSATIONS
with

The cultural affinities and intellectual differences between Stan and Rota were such
that they could talk together for hours, though they were worlds apart mathematically
and philosophically and never collaborated. I was fascinated by these spontaneous
and informal discussions and recorded a number of those that took place in my pres-
ence, to transcribe and assemble loosely in a little collection.

Los Alamos Science selected the following fragments to illustrate the way Stan
and Rota interacted and, more generally, the way mathematicians converse about
what occupies their minds.

Francoise Ulam

The Mathematical Dictionary

ULAM: I think it is a very good idea to try
to write a mathematical dictionary. First
we must settle how many words to think
about. Would you say two hundred or
less’?

ROTA: Two hundred! No. Ten. maybe!

ULAM: No, no. At least a hundred. They
will have to be very diverse. It will be
a long project. Logical words like but
and even have a different character from
words which have a topological or kine-
matical meaning like mix, find, search.
Then there is another class of words like
involve, intuitive, imaginary. There are
many categories. I think we should have
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a few in each. We must say what it is for
in the introduction,

ROTA May I make an introductory sen-
tence?

ULAM: Yes.

ROTA: Let me make an attempt to give a
precise mathematical definition .

ULAM: Not too precise.

ROTA: . a precise mathematical defini-
tion of commonplace terms. We will take
words like but, furthermore, nevertheless,
or crest, degenerate, skid and describe
them in terms of accepted mathematical
terminology.

ULAM: And physical. Physics is almost
completely mathematized now.

ROTA 1 have already, and perhaps, and
pending. They are close.

ULAM: A/ready is difficult mathematical-
ly. What about starting with but?

ROTA: Logicians claim but is the same as
and.

ULAM: No! Its meaning is entirely dif-
ferent. How would you describe but log-
ically? Something that leads us to a con-
clusion but does not? A disappointment
in probability’? A whole essay could be
written about it. Someday there will be
a tremendous theory devoted to its ram-
ifications, It could be a germ like the
word continuous. The study of topology
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is nothing else but the study of the word
continuous.

ROTA: When I was at Princeton, Alonzo
Church gave a two-hour lecture on the
meaning of but and and. It is now written
up in his great Introduction to Mathemat-
ical Logic.

ULAM: So you see! And what does he
say? I never read it. I knew he was a
logician but did not know he did things
like that. Now let’s discuss things intel-
ligently, professor.

ROTA: O.K. Let us begin with the word
but, Stan?

ULAM: I would say that the word but sug-
gests to me the following (we’ll be more
precise later): an element of an algebra
whose elements are uttered sentences. I
can imagine it as a point in a universe of
points interpreted as sentences—physical
facts. I see that it won’t be easy to avoid
circular definitions; we must not use the
word but in developing a theory of but,
right? The word but means that an ele-
ment does not belong to a given set of
points that was defined before. But—I
am just saying this on purpose now—but
expresses that an element belongs to a set
which is similar or slightly larger than the
already given set. Of course, 1 did not
really need to use the word but in my
explanation. However—Oh! I just used
the word however: you see how hard it
is to avoid these words? By the way,
this poses another interesting philosophi-
cal problem, the fact that we cannot ex-
plain a mathematical . . .

ROTA: Let’s not digress.

ULAM: I just want to see what is in my
mind. I do not have a perfect definition
right away. Do you agree that but is an
element which does not belong to a set
that was defined before?

ROTA: Yes. Now let me try my definition.
We have two sets, A and B, and a new
relation between A and B which we will

call contrast. The word but is the contrast
between set A and set B.

UL A M: The set B, in every example I
know of, is usually given by the speaker.
Set A is mentioned; set B is intended. It
is not there at the beginning or maybe it is
only in the mind of the second speaker.
Would it be a good idea to consider it
as a part of conversation? One person
proposes something, and the other replies,
“No, but . . .“?

ROTA: No. I don’t think it is a good idea
to formalize conversation. It would get
us too far from our purpose. If we are
going to give definitions, they have to be
objective.

ULAM : Whatever is done, you always
stick to tempus acti, and you do not want
to do something unorthodox. Why reduce
it to the existing formalism? It is good to
try, but it is not necessary.

ROTA: If possible, do it. Only when you
have to, give up.

ULAM: O.K. I agree. Continue.

ROTA: So you have two sets and the con-
trast between two sets, and the word but is
an expression of this contrast. And now I
would say the word but is used when this
contrast has to be brought out.

ULAM: Very good. But is that really al-
ways true?

ROTA: That is my story.

ULAM: We should have examples, like
in dictionaries. They always give quotes
from Shakespeare.

ROTA : Let me give an example: “We
were going to go out touring today, but
it is raining and we didn’t go.” Analy-
sis: There are two situations, or sets, if
you wish. One, going touring; two, as-
sumption that the weather is fair. Then
the weather turns out not to be fair, so
there is a contrast between fair and unfair
and the word but arises.

ULAM: I agree. Let me give another ex-

ample: “The snail is not an insect, but it
is still an animal. ”

ROTA: Here again you have a set. You
presume the snail to belong to this set.
The contrast arises because you see a
further subdistinction inside this set.

ULAM: Simply, these sets are not equal;
one set contains the other.

ROTA: Be that as it may, either not equal
or partitioned, one contains the other.

ULAM: This is part of it but perhaps not
all. We will have to have detailed discus-
sions like that about every word, as they
do at l’Academie francaise!

ROTA: Let me say that any definition is
necessarily incomplete. It is a property
of definitions to be incomplete.

ULAM: Incomplete perhaps, but still it
should try to be as broad as possible.

ROTA: Then it will never end. There is a
point where one says fine, adequate, even
though it is not the whole story.

ULAM: Yes, I agree.

ROTA: Let’s take another example. One
says of a person: “He is good, but he is
also careless.” How would you analyze
that?

ULAM: A point belongs to two sets. If
you say good, the presumption is that
everything is good about him, so you add
another set.

ROTA: Suppose I replaced the word but by
the word and. In your opinion how would
the meaning of the sentence change?

ULAM: It would be an entirely different
meaning.

ROTA: Why?

ULAM: Because the set of carelessness is
not a set which normally is associated
with the set being good.

ROTA: It is not a complete explanation.
But always requires a contrast.

ULAM: True. What about a distinction?
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ROTA: Distinction is too weak. But re-
quires contrast and unexpectedness.

ULAM: Unexpectedness. Exactly. This is
the essential thing to my mind. Namely
the first set suggests something, and the
second implies the suggestion does not
hold. A set of properties implies a lot
of others, but an exception is made. But
suggests exception.

RO T A: No exception is involved. For
example, “I was going to go out but the
phone rang.” That is no exception.

ULAM: That is yet a different meaning of
but. It says that the normal pattern is
being abruptly changed.

ROTA: Let me say this. A lot of exam-
ples have the following structure. You
have two sets, A and B, and you have an
element c. You expect c to belong to A,
but then it turns out to belong to B. That
is the typical use of but.

ULAM : Right. So it is not a relation of
the contrast but of difference.

ROTA: We have abstracted a set-theoretic
relationship for the word but; namely we
have two sets and an element. The ele-
ment may belong to A but instead it be-
longs to B.

ULAM: Very good! However the two sets
are somehow close. They are not too dif-
ferent or one contains the other because
you could not say, “The pencil is long but
it is black.”

ROTA: Right.

ULAM: Why?

ROTA: There must be a similarity between
the sets.

ULAM : Ah! Now we have caught one
essential point.

ROTA: So there are these properties of
sets which somehow are similar, and then
there is the confusion of one element be-
longing to one instead of the other.
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ULAM: In general the two sets are in some
relation of similarity, close in the sense of
a Hausdorff distance or whatnot, and not
completely separate.

ROTA: Two or more sets are in turn sub-
sets of a set of sets which is predeter-
mined. They are members of the same
family of sets.

ULAM: What does it mean, the same fam-
ily?

ROTA: The family is the similarity class.

ULAM: Right, that is what one could say.
Very good. We are getting somewhere.

ROTA: You see, I am becoming Ulamian.
Set of sets!

ULAM: My example about the pencil was
crucial. It did not make sense. Let us take
something else. For example, however. It
is not quite the same as but.

ROTA: Later. Let us finish with but.

ULAM: We have to warn our readers and
ourselves that there are words that mean
almost the same, with subtle shades of
difference. In French there is mais and
cependant. We ought to analyze that.

ROTA: What about nevertheless and yet?

ULAM: Nevertheless has a greater degree
of something. We should analyze all
these. They are all coming together.

ROTA: In spite cf...

ULAM: I would very much like to define
the word key or lock, because there is a
sort of labyrinth, a maze. You have to
enter a lock a certain way, which at ran-
dom is difficult, and perform a sequence
of operations.

ROTA: Key is absolutely one of the best.

ULAM : Key, lock, labyrinth- there is a
whole topological, combinatorial mean-
ing there. Logical too. Key also has an
abstract meaning, a key to something. We
are just beginning. This is a project for
several months.

ROTA: We could get a grant!

ULAM: From some cultural whatnot—
there are such. Philosophers do not give
grants, but we are rich old men, as Erdos
says. If we could meet an hour a day, we
could get somewhere in one month.

FRANCOISE: Next summer in Santa Fe.
Gainesville

January 1974

On Teaching And Learning

ULAM: Most of what I’ve learned was
subconscious, by osmosis. When I read,
1 am not aware that I am learning. I learn
mainly from conversations, from people
rather than from lectures, and I did not
realize until a few years ago that I have
a good memory.

I could start teaching mathematics with
courses for college freshmen and go to ju-
nior or senior courses without any prepa-
ration, because in mathematics one thing
leads to another.

Let us discuss whether teaching mathe-
matics really makes any sense, Either the

student is so good that he does not need a
teacher, or else, if he needs help, he is not
cut out to become a mathematician. At
Harvard I had some good students with
whom I could talk and feel that teaching
was not merely an empty gesture.

I think I influence people more than I
teach them. 1 influence their taste or their
choices.

ROTA: I learned from you to argue in a
short way, to give only ideas followed
by simple examples. That is the Ulamian
influence.
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ULAM: I don’t mind teaching, but I don’t
like to do it regularly. When I have to
do something at a fixed hour, even if it
is a pleasant dinner or cocktail, I fret.
I hate not feeling completely free. But
of course, being completely free immedi-
ately brings on a feeling of restlessness,
of not knowing what to do!

Each of us has taught several thousand
hours. If you think that a normal working
year in America has about 2000 hours—
an 8-hour day for about 250 days—that
is quite a bit of your waking time, isn’t
it? But maybe it is not entirely waking
time. One does it in a trance, partly
asleep sometimes!

I am told I teach calculus well. It is
possible, for I believe one should con-
centrate on the essence. One should not
teach everything at a uniform level either.
One should stress some important as well
as some unimportant details on purpose—
in a sense to follow the way I think the
memory works.

When you remember a proof you re-
member a sequence of pleasant, unpleas-
ant points, zeros and ones. Here comes
a difficulty you try to remember, and you
make an effort. Then you come to some-
thing that goes automatically and it is
zero, zero, zero. Then again a special
trick that has to be remembered. It is like
going through a labyrinth.

ROTA: I am amazed at your labyrinth!

ULAM: I learn best from conversations.
I love them, and that is how I learned
physics in Los Alamos.

Some people are different in this re-
spect. They prefer to learn slowly and
methodically. How about you?

ROTA: I learn best when I am forced to
do it.

ULAM: Speaking of being forced to learn,
in Poland it happened several times that I
announced that I would speak on a certain
subject at a meeting of the mathematical
society before I had a proof. I felt abso-
lutely confident that once I had agreed to
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speak, I would get a proof. It could have
been an embarrassment otherwise.

On the other hand, when I look at a pa-
per of mine which has been published, I
discard it after one glance, from fear that
I will discover that it is wrong. There
is also this tiny gnawing doubt about
whether the result is new or not. Yet even
in a field about which I know nothing, I
can always tell whether a theorem or a
point of view is good or not. This feeling
comes somehow from the way the quanti-

fiers are arranged, from the tone or music
of the piece.

Do you remember what Galois wrote
in his final letter before his fatal duel?
He wrote that in their publications math-
ematicians really conceal the way they
obtain their results because the process
of discovery is different from what ap-
pears in print. It is important to repeat
this again and again.

Gainesville
February 1974

John von Neumann

ULAM: Hot! What is the temperature?

ROTA: 80 or so.

ULAM: Pas possible! It must be the hot-
test day in thirty years. Which reminds
me, once flying back to Los Alamos on
Carco on a hot summer day, I opened
the little window and my handkerchief
flew out of the plane. Behind us there
was a second plane carrying Johnny and
others. What do you think the probability
is that my handkerchief could have gotten
enmeshed in the propeller of the other
plane?

ROTA: Von Neumann was older than you.

ULAM: Six, seven years.

ROTA: An older man!

ULAM: Yes. You know how it is. In the
beginning the percentage was twenty or
so; later it went down to ten.

ROTA: So you considered him a senior,
and yet you made fun of him?

ULAM: Oh always! Of Banach too. I was
always impudent.

ROTA: He did not treat you as someone
younger?

ULAM: No. I don’t think he knew any-
body more intimately and vice versa, de-
spite our difference in age. For a man of
his stature he was curiously insecure, but
his understanding, intelligence, mathe-
matical breadth, and appreciation of what
mathematics is for, historically and in the
future, was unsurpassed. His immense
work stands at the crossroads of the de-
velopment of exact sciences. The ra-
tionalization of the idea of infinity-the
life blood of its history—with its myste-
rious power to encode succintly and gen-
erally the properties of numbers and the
patterns of geometry, received some of
its definite formulations from his work.
His ideas also advanced immeasurably
the attempts to formalize the new, strange
world of physics in the philosophically
strange work of quantum theory. Funda-
mental ideas of how to start and proceed
with the formal modes of operations and
the scope of computing machines owe an
immense debt to his work, though they
still today give hints that are only dimly
perceived about the workings of the ner-
vous system and of the human brain itself.

Other mathematicians strike me as vir-
tuosi who play their own special instru-
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ments. None are comparable to Johnny.
By the way, you were supposed to ask

about the foods von Neumann liked.

ROTA: List the foods von Neumann liked
and those he did not like!

ULAM: He was not a gourmet, but he
liked to eat. He liked to go to restaurants,
mainly, I think, to escape from the usual
scene or routine. It was an excuse for
not working, because he was a very hard
worker. At home he worked at a desk,
writing, a thing which irritated me a bit.
When I stayed at his house and saw him
suddenly leave to go upstairs and write,
I, cruelly and foolishly I must say, would
make fun of it. So for relaxation he liked
to drive out for dinner. In Princeton we
often went to a restaurant called Marot,
on the highway to Trenton.

He never smoked, but he ate volumi-
nously, which accounted for his increas-
ing rotundity and portliness as the years
went by. Sometimes when Klari, his sec-
ond wife, could not finish what was on
her plate, she would give it to Johnny or
to me and say, “Both of you are human
garbage cans!” Klari, by the way, was
a very intelligent, very nervous woman
who had a deep complex that people paid
attention to her only because she was the
wife of the great von Neumann, which
was not true of course.

Johnny liked Mexican food, hot pep-
pery stuff. I suspect it was because if
he had a stomachache later, he would

know what to blame it on! I always
have such Machiavellian suspicions. It is
probably just that he was used to Hun-
garian goulashes and hot paprika. He
liked sweets too, but on the whole what
he wanted was volume, like me, like you
too. You like the volume of pasta.

He had this nervous trait, an almost
automatic response. For example, when-
ever he saw the words chicken mole on
a menu, he would automatically intone
Moles Hadriani, and I would respond
Jacques de Molay—you know, the Grand
Master of the Knights Templar. It was a

game of association, just like you always
add Pal [Hungarian for Paul] when you
hear the word Erdos!

He also had occasionally an infrequent
but noticeable stutter. He would say a
word and repeat it two or three times
in quick succession. I wonder whether
it could have been an incipient physi-
cal lesion, for he died of things affecting
his brain. Actually, on second thought
it couId not, because his cancer started
somewhere else. Sometimes I suspect
that his stutter was in order to gain time
while thinking over a riposte or consider-
ing quickly some other angle for a state-
ment, like a person lighting a pipe to gain
time.

ROTA: How long did you know von Neu-
mann?

ULAM: I first met him in Warsaw in 1935,
but I had already started corresponding
with him the year before, and that is when
he invited me to visit him at the Institute
in Princeton.

ROTA: What was he working on at Los
Alamos during the war?

ULAM : On everything. He was one of
the originators, one of the “influencers” of
implosion. By the way, you are my most
eminent "influencee”; it is a relationship
different from teacher-student.

He worked on the whole project, sci-
entifically and politically, especially with
the hydrogen work.

ROTA: But actual work?

ULAM: Of course, mostly hydrodynamics.

ROTA: Did he know much physics?

ULAM: To some extent, but he did not
have the physicist’s feeling for experi-
ment. His interest was more modem than
Hilbert’s. His interest was in the founda-
tions of quantum mechanics, which were
mathematical. And that could be taken
as an example of mathematics not really
useful for real physics.

But there was no bullshit in him. That

is an expression he used about certain
people. He would say, “It is very rare,
but there is no bullshit in so-and-so.”

Of course he worked, in answer to
your question. In fact he was unable to
play the role of senior scientist or advisor
without being actively engaged, like with
computing. Even towards the end of his
life, when he was chairman of the ICBM
Committee, a committee established by
the President after Sputnik.

ROTA: 1 still don’t have a picture of von
Neumann’s personality.

ULAM: He loved jokes, though I don’t
think he invented many, but he remem-
bered and repeated them, and occasion-
ally he made original and very witty re-
marks or saw comparisons which were
comical. Most are unprintable.

A propos of the church knowing about
the atom bomb, he said, “Priests will
bless the active cores.” And when he no-
ticed all the churches of Los Alamos, he
was much amused when I pointed to one
church and called it “San Giovanni delle
Bombe”! One of the first solid non-wood
buildings in Los Alamos was built for the
offices of the AEC. He called it “El Pala-
cio de la Seguridad”!

Oh! One thing about Johnny, he tended
to tell people what they wanted to hear.
He also used to tell me his little tacti-
cal discoveries. Once he said, “In Los
Alamos it is very difficult to introduce
novelty, but once introduced, it is impos-
sible to get rid of it!”

After the war he was for a Pax Amer-
icana, and one could probably have es-
tablished it, but the historical perspective,
the desire to do it were not present in the
country. The general population was not
thinking in those terms. Although, when
World War 11 ended, Americans were like
Roman citizens during the Roman Em-
pire. By commuting through the Ameri-
can bases one could go anywhere in Eu-
rope without encountering the native pop-
ulations. This was really a beginning of
that sort of thing, but for good or for
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bad—who knows—it quickly dissipated.
What else would you like to know

about von Neumann?

ROTA: Always well dressed, wasn’t he?

ULAM: Not really well dressed, but sim-
ple, decent, well-cut, classic city dress.

ROTA: I still don’t have a picture of the
man.

ULAM: He became an important govern-
ment figure and very influential in ballis-
tic missile development.

ROTA: It is strange how you like every
thing about him except his work in math-
ematics.

U L A M: Really? No, not quite so. But
he was not a mathematician’s mathemati-
cian. He did little in number theory, some
in continuous geometry and operators and
Hilbert space, and some in measure the-
ory and group theory.

To my mind and to my taste, the most
important work he did is what he did
when he was getting older, which math-
ematicians don’t appreciate, namely his
speculations on automata, on the brain,
and his contributions to computing and
to problems in hydrodynamics.

He knew about quantum theory and
some parts of theoretical physics, which
few mathematicians did. He contributed
to the grammar of physics, so to say. One
must also mention the theory of games.
What interested me less was his work in
the almost-periodic functions of groups.

ROTA: Can you tell me something about
how his mind worked?

ULAM: It is curious tome that in our many
mathematical conversations on topics be-
longing to set theory and allied fields, he
always seemed to think formally. Most
mathematicians, when discussing prob-
lems in these fields, seem to have an
intuitive framework based on geometri-
cal or almost tactile pictures of abstract
sets, transformations, and such. Johnny
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gave the impression of operating sequen-
tially by formal deductions. His intuitions
seemed very abstract; they involved a
complementarily between the formal ap-
pearance of a collection of symbols, the
games played with them, and the interpre-
tation of their meanings. Something like
the distinction between a mental picture
of the physical chess board and a men-
tal picture of a sequence of moves on it
written down in algebraic notation!

The quickness of his thinking was quite
remarkable. He saw immediately the
possibilities of Monte Carlo. To my
mind this was much more important than
one hundred papers in partial differen-
tial equations! It is at least a general
procedure—I would not quite call it a
method—and he invented many tricks for
it and specific ways to get random distri-
butions. It was very pleasant to discuss it
with him.

Too bad he did not live to see how
computers have revolutionized everything
and what influence they will have on sci-
ence in general and even on pure mathe-
matics. His role in their development was
tremendous, and if I may say so I would
say I too played a modest role in showing
how to use computers!

ROTA: How would you characterize his
influence?

ULAM: There used to be a time when there
were mathematicians who gave specific
ideas and choice of topics and directions
either explicitly or by implication to the
work of other mathematicians. Not to
go back centuries but less than a hun-
dred years, let us say Poincare, Hilbert, in
more recent times Herman Weyl. Hilbert
had laid what was hoped would be a
foundation for the final axiomatization of
mathematics and beyond, of all science.
Little did he know that in the thirties the
unavoidable limitations of this approach
would be revealed.

Von Neumann was one of these giants
too in the breadth of his knowledge, espe-
cially when one remembers that now the

diversity and complexity of contempo-
rary problems enormously surpass the sit-
uation confronting Poincare and Hilbert.
Yet, he admitted to me that he felt he
did not know even a third of mathemat-
ics, that he did not think it was possible
nowadays for any one brain to have more
than a passing knowledge of more than
one-third of pure mathematics.

So, at his suggestion and for his amuse-
ment I concocted an oral doctoral exam-
ination in various fields in such a way
that he would not be able to pass it. And
indeed, when I thought about what prob-
lems to give him in each domain, I found
one in differential geometry, one in num-
ber theory, one in algebra and a couple of
others. And he agreed that he could not
have answered any of the questions and
the exam would have been a complete
failure. Which goes to show that doc-
toral exams are to some extent meaning-
less. Of course, if one prepares for some
specific topics, that is something else.

ROTA: Who was von Neumann a student
of?

ULAM: He considered himself a student of
Ehrardt Schmidt. It was not easy for me
to get to the bottom of this. One reason,
I suspect, is that Schmidt did some work
in combinatorics which always interested
Johnny very much.

ROTA: It was the Hilbert space. Schmidt
was the only person at the time who stud-
ied nonlinear operators.

ULAM: But Johnny did not.

ROTA: That is why he admired Schmidt!

ULAM: Also I remember that he told me
that Schmidt did not like to write. That
surprised Johnny. I also think he secretly
admired it. He said that Schmidt had
told him that he felt faint whenever he
saw a blank sheet of paper. Johnny was
not at all like that. On the contrary,
whenever he had a mathematical thought,
he immediately wanted to write it down
and elaborate.
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ROTA: Did he have any students?

ULAM: Not really, even though at the In-
stitute he gave several courses every year.
Murray and Halperin may be considered
his students.

ROTA: What about Godel and von Neu-
mann?

ULAM: One summer before the war when
I was returning to the States, Johnny was
waiting for me at the pier. His first words
were that Godel had shown that the con-
tinuum hypothesis was undecidable. This
was how I heard for the first time about
the existence of undecidable propositions
in any formal system. So I said to him,
“oh! That is because he defines what
is meant by a set. ” Johnny opened his
eyes wide and expressed surprise that I
had seen right away what was indeed the
essential point. He thought I had some
supernatural intuition.

I asked him whether Godel was not a
little afraid that his result was nothing
but a sort of super paradox of the exist-
ing set theory, merely a diagonal method.
In a sense it is a diagonalization. He
agreed that this was probably right and
that Godel did not quite realize the im-
portance of his discovery because of the
fear that it would turn out to be merely
another version of the whole series of set-
theoretical paradoxes. Of course it was
much more than that because he had made
it all formal. The other paradoxes were
special and dependent on metamathemati-
cal considerations that were not truly part
of mathematics, whereas his results were.
Curious how nervous people can be about
their own work when it is the work!

ROTA: You have a higher opinion of Godel
than I have.

ULAM: Yes, I know. It was so unexpected
at the time, and poor Hilbert was . . .

ROTA: Not to speak of poor von Neu-
mann.

ULAM: Johnny told me that Godel’s re-

sults made him very downcast, not quite
despairing but disappointed. You must
remember that his work on the axiomati-
zation of set theory, which was way back
in the twenties, constitutes to this day one
of the best foundations for set-theoretical
mathematics. Basically he believed in
Hilbert’s goal of a final and conclusive
axiomatization of mathematics, and yet,

in a 1925 paper, in a mysterious flash of
intuition, he pointed out the limits of any
axiomatic formulation of set theory. That
was perhaps a vague forecast of Godel
result. But it was left to Godel to follow it
through, and it has changed the direction
of all science.

Gainesville
January 1974

On Ethnic Minds

ROTA: What is the difference between the
Slavic mind and the German mind?

ULAM: The German mind is systematic;
the Slavic is not. Slavs tend to be soul-
ful, expansive, pensive, but they are not
as nebulous or as much carried away
by the sound of words as Germans are.
In the German language syllables and
words concatenate, and they concatenate
thoughts which sometimes don’t go very
well together.

ROTA: Whereas the Slavic?

ULAM: Slavs tend, I think, to be self-
analytic, more psychological than philo-
sophical, full of regrets, feelings of guilt,
but more fundamentally optimistic than
the German, and with humor, which if it
is not showing, is at least not far away.
German humor is based on ridicule, I
don’t know why. Latins are something
else.

ROTA: Describe the Latin mind.

ULAM: Order. Clarity is always there.
Words are separated, they don’t stick to-

gether. It is like well-cooked rice com-
pared to the sticky overcooked stuff that
comes out of a German mess.

What would you say about the Jews?
Would you say there is a Jewish mind?

ROTA: I don’t think so. Italian Jews are
Italian, German Jews are German, and so
on.

ULAM: Don’t you think that the Jewish
mind is a little truculent, that there is
a bent for contradiction? I feel I have
myself this Jewish characteristic of al-
ways wanting to change what exists. It
is a sort of rebelliousness, an inabil-
ity to kowtow to authority. Think of
the great revolutionaries—Jesus, Marx,
Freud, Einstein, Cantor. Cantor by the
way was only half Jewish. Most Jews
are only part Jewish, you know, but the
Jewishness comes through all the same.

This rebellious spirit of the Jews does
not show in music, where the Jews are
much less creators than performers, in-
terpreters.

Gainesville
January 1974
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Gamow And Teller

ULAM: It is Gamow who brought Teller to
George Washington University originally.

ROTA: From zero’?

ULAM: From Europe, in Hitler time, when
he had no job.

ROTA: How did Gamow and Teller get
along?

ULAM: Gamow ruined Teller a bit. Ga-
mow had this fantastic talent—an intu-

ition, a lightness of touch for what is im-
portant, without doing too much work,
without much mathematics, without any
laborious Grundlichkeit. Teller wanted to
be like that. He had other talents. com-
plementary perhaps. Comedians always
want to be tragedians and vice versa. Un-
der Gamow’s influence Teller wanted to
have “ideas” at any cost.

Gainesville
January 1974

ULAM: Plutarch compared lives, and it
may have a certain sense, a certain value,
to compare pairs of mathematicians. Take
Erdos. Erdos and I have something in
common, a tremendous facility for find-
ing difficult combinatorial problems out
of thin air.

I’d like to take Erdos, Rota, and Ev-

erett and, like in the theory of colors, see
whether by mixing them one could pro-
duce all other colors!

ROTA: Your style is completely different
from Erdos’s. He is interested in proofs;
you are not interested in proofs. You are
interested in problems interesting to state
and don’t care very much how they are
solved. Erdos cares about techniques that
he uses all the time.

ULAM: Really? He likes to think from the
beginning; he does not quote somebody’s
theorem to prove something else,

ROTA: Your typical problem can almost
always be restated as follows: Develop a
theory of . . along the following lines.
That is what your problems are about,
whereas Erdos are never this way.

ULAM: Maybe he exaggerates by trying
to put everything on paper immediately.

ROTA: There is a primitivism to Erdos.

ULAM: Yes. I have that feeling too, very
much. Once you said something which if
true is very flattering, namely that things
I mention are germs of whole theories,
whereas his on the whole are more spe-
cial.

Erdos is not really narrow, but it is hard
to get things out of him. I think he knows
a great deal, though I don’t think he has
read much belles-lettres.

ROTA: He has no outside interests.

ULAM: I think he reads quickly and effi-
ciently and gets the gist of things. 1 don’t

know how much he knows, say, of French
literature, the classics, history. He does
know some history because he is inter-
ested in politics. He reads about current
things. progress in medicine, a little about
physics. He forms impressions.

He is really very nice, never diminishes
people, does not make fun of anybody,
and is very much interested in young peo-

ple in the sense that he is always search-
ing for young geniuses. Wouldn’t you
say that in a sense he is more human
than von Neumann or Fermi? Fermi was
enormously aware of but not warmly in-
terested in others.

ROTA: I really don’t understand Erdos as a
person. 1 understand him mathematically.

UL A M: He wants to be famous. He is
very well known. Every mathematician
knows him. He has written over 800
papers. You know the “Erdos number”-
who wrote papers with him. People have
a weakness for him. He has some sense
of humor. Politically he is not naive at
all. He is very well wishing, and really
I have never heard him speak badly of
anyone. Very few people are like that,
You speak badly of people. 1 speak badly
of people.

The death of his mother was a terrible
blow; he still has not recovered. She was
ninety-one, and he says she still could
have lived another three or four years.

Erdos is interested in human destiny, in
sickness, in death. He has no home. Now
he refuses to go to Hungary because of
their attitude towards two Israelis. Last
summer, at the time of a meeting in his
honor. Hungary did not let two Israeli
mathematicians in. This infuriated him,
and he said he would not return for sev-
eral years. He is a true man of principles
and in a way very courageous.

Gainesville
March 1974

Erdos
Paul Erdos is the most prolific
mathematician of modern times
and is second only to Euler in the
volume of work produced. He was
a long-time friend and collabora-
tor of Ulam. In Ulam’s files are
191 letters from Erdos, mostly in
longhand. Erdos collaborates the
world over and has done more for
collaboration in mathematics than
anyone else.
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Teaching Physics To Rota

ROTA: What are your views on classical
physics versus quantum mechanics?

ULAM: Quantum mechanics uses vari-
ables of higher type. Instead of idealized
points, or groups of points or little spheres
or atoms or bodies, the primitive notion
is a probability measure. Quite a logical
leap from the classical point of view.

Nevertheless you find in quantum me-
chanics the strange phenomenon that a
theory dealing with variables of higher
type has to be imaged on variables of
lower type. It is the complementarily be-
tween electron and wave.

In our minds, because of habit or his-
torical conditions, an electron is a lo-
calized small object, whereas a wave is
something diffuse. But some phenomena
show a dual nature; they share proper-
ties of one and the other. I don’t think
there is yet a satisfactory logical or math-
ematical discussion of this duality. In
my opinion it does not do any good to
write down axioms which sanctify the
usual dicta. People accept what works.
Quantum theory is very successful at de-
scribing atomic phenomena, and some of
its general features seem to be valid even
in the subatomic nuclear and elementary-
particle phenomena. But the overall suc-
cess is not too striking, except perhaps in
quantum electrodynamics.

To me the situation in theoretical phys-
ics seems to be the following. There are
about one hundred bright young physi-
cists in the country, all mathematically
very skillful and learned-too much so
for my taste! To predict or explain some
of their observations, they fudge a lit-
tle, which is only natural. However the
next experiments at CERN or Fermilab
always seem to invalidate their calcula-
tions. You would think that among so
many guys making so many different pre-
dictions, at least a few would get some

correct answers, but no! Whatever the
prevailing beliefs or attempts, the new
experiments show something else. How
can this be? Nature is not that malicious.
Maybe today’s physicists are technically
very skilled but not really imaginative or
innovative enough.

ROTA: What is to your mind problem
number one in physics?

ULAM: Is there a true infinity of structures
going down into smaller and smaller di-
mensions? Is it not a precise problem, or
recognized as such.

In physics there has always been an
atomistic or a field point of view. If
there is a field, then points are mathe-
matical points and they are all the same.
But another possibility is a very strange
structure of successive stages, each stage
different. The topology or the scene
on which they exist, that is, space and
time themselves, need not be the uniform,
smooth Euclidean topology. The miracle
is that physics would not be possible if
protons and electrons were not very much
the same. If this similarity or identity of
subsets of the universe did not exist, there
would be no physics. The role of physics
to some extent is to divide the existing
groupings+ all them particles-into en-
tities isomorphic or almost isomorphic to
each other.

The great hope of physics lies in the
fact that one can almost repeat the same
situations. Having twenty or twenty-two
bodies does not radically change a phys-
ical law. In mathematics too there are
similar analogies. In physics such analo-
gies are essential.

It may be that in reality for phenomena
in the small and involving high energy,
there may be an underlying true infinity
that does not allow for similarities. It may
be that at the present stage of evolution of
the universe a sufficient number of identi-

cal situations has not yet been produced.
If this is so, then physics will become
fundamentally more complicated.

Who knows whether there are not fun-
damental complications in the nature of
subparticles? Are the billions of protons
that compose our bodies or this table re-
ally the same? This stability is far from
guaranteed. There might be critical num-
bers, critical crises not only in technology
but in fundamental physics itself.

Since Godel, even in mathematics
not simple anymore. Have I told
that van Hove asked me to give a
on infinities in physics at CERN?

ROTA: What did you say?

it is
you
talk

ULAM: I intend to write it up in my future
Physics for Mathematicians.

In recent years you seem to have lost
your feeling of horror towards physics!

RO T A: I did not understand. I like to
understand.

ULAM: Do you understand mathematics?
It is easier to get accustomed quickly to
a fixed symbolism, like that of mathe-
matics. But this is largely an illusion.
Mathematics has a restricted range; it has
not changed since Archimedes. There are
axioms, proofs, lemmas, theorems. In
physics it is not clear what one really does
and at what point one becomes satisfied
that the formulation is correct.

Santa Fe
July and August 1974
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Miscellaneous Comments About Mathematics

ULAM: A French philosopher whose name I forget said that nowhere has the human Mathematics
mind shown itself so inventive as in devising new games. and Games

ROTA: Inventors of games are always anonymous, Why’? What is your philosophy of
the anonymity of games?

ULAM: Probably other people quickly perfected the original invention, and it is difficult
to find out who thought of it first.

Are games part of combinatorics or the other way around? I claim that much of
mathematics can be “paisaised,” a Greek word which means to play.

Here is an example of a problem inspired by a game. Suppose n is a given integer
and we are to build, you and I, two permutations of n letters. We construct them in

Finally we get a permutation. Then we play for the second permutation. If the two
permutations generate the group of all permutations, I win; if not you win. Who has a
winning strategy in this game’? I don‘t know,

If we do it at random, what is the chance [that there is a winner]’? This then
becomes a combination of measure, probability, and combinatorics. I talk about this
racket in my book of problems. It is amusing, isn‘t it’? It can be done in any branch
of mathematics.

Paris
April 1972

ULAM: Combinatorics is devoid of general methods,
curiosities, it is Erdosian. I have nothing against it,
no light on anything else.

ROTA: You are not being fair.

It is full of nice individual
it is amusing. But it throws

ULAM: Complex functions, the idea of entropy are broader, Ramsey’s theorem, inter-
esting as it is, is like progress in zoology when a new species of insects with one red
eye and one green eye has been discovered !

ROTA: Ramsey’s theorem tells more about the nature of sets than all the axioms of set
theory!

ULAM: It is one of numerous properties of infinity. Why take two sets of pairs and
divide them into two classes’? My master’s thesis already contains that sort of thing,

Some problems, big or small, are solved with a bang; they open new vistas. Others
are solved with a whimper, in a way which is very specific and leaves nothing to be
said or asked, regardless of whether the problems are important or interesting.

Paris
April 1972
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Combinatorics

Ramsey’s Theorem
One consequence of Ramsey’s
theorem is the following: Among
a gathering of 6 people, there
will be at least 3 all of whom
know one another or else there
will be 3 none of whom know one
another. This is not true if only 5
are gathered together. In general,
for each positive integer k there
is a positive integer n = n(k)
such that if n people are gathered
together, then there will be k all
of whom know one another or else
none of whom know each other.
To this date we know only that
n(k) exists but not its value for
arbitrary k. It is known, however,
that n(2) = 2, n(3) = 6, and
n(4) = 18.
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Cantor ULAM: Set theory revolutionized mathematics. It is largely the work of Cantor. What
made set theory is the fact that Cantor proved that the continuum is not countable. It
is hard to imagine that a field that arose from trigonometric series quickly transformed
the shape and flavor of math.

Paris
April 1972

Godel ULAM: A second landmark on the scale of centuries was Godel’s undecidability theorem.
Now there is a flood of results that show that our intuition of infinity is not complete.
Cohen’s results opened the flood gate.

Mathematics is not a finished object based on some axioms. It evolves genetically.
This has not yet quite come to conscious realization.

Paris
May 1972

A Few
Unsolved
Problems

The Continuum Hypothesis

or
if E is an uncountable subset
of the interval [0,1], then there
is a one-to-one correspondence
between the elements of E and all
the numbers between O and 1.

Twin Primes Conjecture
There are infinitely many primes p
such that p + 2 is also a prime.

Goldbach Conjecture
Every even integer equal to or
greater than 6 can be expressed
as the sum of two odd primes in
at least one way . For example,
12= 5+7 and 16= 3 +13 = 11+5
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ROTA: Can you list ten unsolved problems in mathematics which you consider impor-
tant?

ULAM: First, the continuum hypothesis. If you take the existing axioms for set theory,
then it is independent.

ROTA: One!

ULAM: But the existing axioms are probably not enough to give expression to our
intuitions about sets. In that sense the continuum hypothesis is not a closed story.

Two. In number theory, any problem is as good as any other. I don’t know which
to choose, the infiniteness of twin primes or the Goldbach conjecture. The fact that
they are very difficult and so simple makes them in my opinion very important. I have
to list the Riemann hypothesis because it has so many consequences, although it is not
one of my favorite problems, for a reason which I cannot express.

ROTA: Would you list the Riemann hypothesis as third?

ULAM: I don’t like to order them. Snobbism plays a role in the ranking of mathematical
problems. By chance some so-called great mathematician mentions something. For
example, out of Hilbert’s marvelous twenty-three problems, several would not be
considered important if it were not for the fact that it was Hilbert who proposed them!
Now what would you say besides these?

It is like asking someone to please mention ten best dishes or paintings! I don’t
know whether any single problem is really important, except in foundations of set
theory. They are mainly important for what they suggest or allude to, Think of
Fermat’s conjecture. It is important because it is difficult but probably also because
whoever will solve it will have found some new trick or method. The important thing

Los Alamos Science Special Issue 1987



Conversations

is that the break is simple and difficult. I came to this conclusion sort of gradually. I Riemann Hypothesis
am being honest, which most people are not.

A great problem is: Why are some problems sometimes difficult to solve? That
is metamathematical, but it may some day be mathematized. The notion of complexity
is beginning to be made precise, and what I just said will become a super problem.

ROTA: Why should Goldbach’s conjecture be more interesting than a Chinese puzzle’? Fermat’s “Last Theorem”
If n > 2, there do not exist

ULAM: Because it is simple. Any child can understand it. Isn’t it curious that a child positive integers X,y, and z such
can ask questions about numbers that no mathematician can answer?

Gainesville
January 1974

ULAM: Why is it that calculus, which deals with limits, is so effective? Or why are Infinity
asymptotic theorems so much simpler than finite approximations? Infinity does not
correspond to the popular image. It is a guiding light, a star that draws us to finite
ways of thinking, God knows why.

Santa Fe
July 1974

ROTA: What is the value of mathematics? The Value

ULAM: Value? In what sense? In what market?
of Mathematics

It has value because it trains the brain. Just like in any other game, practice
sharpens the organ. I don’t know if today mathematicians’ brains are any sharper than
in the time of the Greeks. Yet I think mathematics plays a genetic role. It is one of the
few ways to perfect the brain, to perhaps develop new connections in the brain. It has
a peculiar sharpening value. Nothing could be more important. I don’t know if’ any
other science plays the same role. Another value is the aesthetic one, which is for the
practitioners.

ROTA: What is its ugliness’? Could you state an ugly theorem?

ULAM: Ugliness lies in the fact that one has to be punctilious, make sure of every step.
In mathematics, one cannot paint with a wide brush, one has to fill in all the details.

The same is true in chess. There are chess games which have flaws. In fact most
do. Otherwise there would not be a loser.

ROTA: Compare mathematics to the classics as an educational technique.

ULAM: I would say they are complementary. Latin grammar is good training in logic,
not Boolean logic, but relational logic.

Santa Fe
July 1974
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ULAM: Mycielski disagrees with me when I say there will be systems of axioms for Foundations
set theory other than the Zermelo-Fraenkel point of view. He claims that everything of Mathematics
that we can think of can be expressed in those terms. This may be true but there
might someday be entirely new points of view, even about sets or classes of sets. Sets
may some day be considered as “imaginary.” I think that will come to pass, though at
present it is not admissible.

Everything that is conceivable somehow eventually comes into existence, in what
form we cannot say. Ideas which begin in a prosaic way, like the study of complexity,
are the ones that go very far.

ROTA: As a phenomenologist I agree.
Santa Fe

July 1974

ROTA: What about l’avenir des mathematiques today? The Future

ULAM: Mathematics will change. Instead of precise theorems, of which there are now
of Mathematics

millions, we will have, fifty years from now, general theories and vague guidelines,
and the individual proofs will be worked out by graduate students or by computers.

Mathematicians fool themselves when they think that the purpose of mathematics
is to prove theorems, without regard to the broader impact of mathematical results.
Isn’t it strange?

In the next fifty years there will be, if not axioms, at least agreements among math-
ematicians about assumptions of new freedoms of constructions, of thoughts. Given an
undecidable proposition, there will be a preference as to whether one should assume
it to be true or false. Iterated this becomes: Some statements may be undecidable
undecidable. This has great philosophical interest.

ROTA: I disagree. I don’t think the current work in set theory is going anywhere, and
I deny that it has philosophical import. It is a bunch of technicians doing Talmudic,
irrelevant exercises.

ULAM: You may not like it, but it is as relevant as Heidegger!
Set theoreticians are workers, not generals, discovering interesting facts on the

behavior of axioms and how incomplete they are. To me this is of great interest.
One used to assume certain ideas of infinity and suddenly, 10 and behold, they are
incomplete.

Santa Fe
August 1976
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